Mining potential research synergies from co-authorship graphs using power graph analysis

Iraklis Varlamis, G. Tsatsaronis
{"title":"Mining potential research synergies from co-authorship graphs using power graph analysis","authors":"Iraklis Varlamis, G. Tsatsaronis","doi":"10.1504/IJWET.2012.048520","DOIUrl":null,"url":null,"abstract":"Bibliographic databases are a prosperous field for data mining research and social network analysis. They contain rich information, which can be analysed across different dimensions (e.g., author, year, venue, and topic) and can be exploited in multiple ways. The representation and visualisation of bibliographic databases as graphs and the application of data mining techniques can help us uncover interesting knowledge concerning potential synergies between researchers, possible matchings between researchers and venues, candidate reviewers for a paper or even the ideal venue for presenting a research work. In this paper, we propose a novel representation model for bibliographic data, which combines co-authorship and content similarity information, and allows for the formation of scientific networks. Using a graph visualisation tool from the biological domain, we are able to provide comprehensive visualisations that help us uncover hidden relations between authors and suggest potential synergies between researchers or groups.","PeriodicalId":396746,"journal":{"name":"Int. J. Web Eng. Technol.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Web Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJWET.2012.048520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Bibliographic databases are a prosperous field for data mining research and social network analysis. They contain rich information, which can be analysed across different dimensions (e.g., author, year, venue, and topic) and can be exploited in multiple ways. The representation and visualisation of bibliographic databases as graphs and the application of data mining techniques can help us uncover interesting knowledge concerning potential synergies between researchers, possible matchings between researchers and venues, candidate reviewers for a paper or even the ideal venue for presenting a research work. In this paper, we propose a novel representation model for bibliographic data, which combines co-authorship and content similarity information, and allows for the formation of scientific networks. Using a graph visualisation tool from the biological domain, we are able to provide comprehensive visualisations that help us uncover hidden relations between authors and suggest potential synergies between researchers or groups.
利用功率图分析从合作作者图中挖掘潜在的研究协同效应
书目数据库是数据挖掘研究和社会网络分析的一个繁荣领域。它们包含丰富的信息,可以跨不同维度(例如,作者、年份、地点和主题)进行分析,并可以以多种方式加以利用。将书目数据库以图形的形式表示和可视化,以及数据挖掘技术的应用,可以帮助我们发现研究人员之间潜在的协同作用、研究人员和场所之间可能的匹配、论文的候选审稿人甚至是展示研究工作的理想场所等有趣的知识。在本文中,我们提出了一种新的书目数据表示模型,该模型结合了共同作者身份和内容相似度信息,并允许形成科学网络。使用来自生物学领域的图形可视化工具,我们能够提供全面的可视化,帮助我们发现作者之间隐藏的关系,并建议研究人员或团队之间潜在的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信