Fluid Motion Equations in Tensor Form

D. Nikushchenko, V. Pavlovsky
{"title":"Fluid Motion Equations in Tensor Form","authors":"D. Nikushchenko, V. Pavlovsky","doi":"10.5772/INTECHOPEN.91284","DOIUrl":null,"url":null,"abstract":"In the current chapter, some applications of tensor analysis to fluid dynamics are presented. Governing equations of fluid motion and energy are obtained and analyzed. We shall discuss about continuity equation, equation of motion, and mechanical energy transport equation and four forms of energy equation. Finally, we shall talk about the divergence from transfer equations of different parameters of motion. The tensor form of equations has advantages over the component form: these are, first, compact writing of equations and, second, independency from reference frames, etc. Moreover, it allows to obtain new forms of equations on the basis of governing ones easily.","PeriodicalId":189982,"journal":{"name":"Advances on Tensor Analysis and their Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances on Tensor Analysis and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.91284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the current chapter, some applications of tensor analysis to fluid dynamics are presented. Governing equations of fluid motion and energy are obtained and analyzed. We shall discuss about continuity equation, equation of motion, and mechanical energy transport equation and four forms of energy equation. Finally, we shall talk about the divergence from transfer equations of different parameters of motion. The tensor form of equations has advantages over the component form: these are, first, compact writing of equations and, second, independency from reference frames, etc. Moreover, it allows to obtain new forms of equations on the basis of governing ones easily.
张量形式的流体运动方程
本章介绍了张量分析在流体力学中的一些应用。得到并分析了流体运动和能量的控制方程。我们将讨论连续性方程、运动方程、机械能输运方程和四种形式的能量方程。最后,我们将讨论不同运动参数的传递方程的散度。方程的张量形式比分量形式有优势:首先,方程的紧凑书写,其次,独立于参考系,等等。此外,它允许在控制方程的基础上轻松地获得新形式的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信