Infrared Species Limited Data Tomography using Kalman Filtering

K. Daun, Steven L. Waslander, Brandon B. Tulloch
{"title":"Infrared Species Limited Data Tomography using Kalman Filtering","authors":"K. Daun, Steven L. Waslander, Brandon B. Tulloch","doi":"10.2514/6.2010-4914","DOIUrl":null,"url":null,"abstract":"In infrared species limited data tomography the spatial concentration distribution of an unknown species, for example the air/fuel ratio in a combustor, is inferred from the attenuation of multiple collimated light beams shone through the measurement field. The resulting set of linear equations is rank-deficient so it is necessary to introduce prior assumptions about the smoothness and nonnegativity of the distribution to recover a solution. This paper investigates whether the Kalman filter can be used to incorporate additional information from the observed time-evolution of the attenuation measurements to further improve the reconstruction accuracy, but finds that performing a series of static measurements is both more accurate and computationally efficient.","PeriodicalId":328008,"journal":{"name":"27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2010-4914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In infrared species limited data tomography the spatial concentration distribution of an unknown species, for example the air/fuel ratio in a combustor, is inferred from the attenuation of multiple collimated light beams shone through the measurement field. The resulting set of linear equations is rank-deficient so it is necessary to introduce prior assumptions about the smoothness and nonnegativity of the distribution to recover a solution. This paper investigates whether the Kalman filter can be used to incorporate additional information from the observed time-evolution of the attenuation measurements to further improve the reconstruction accuracy, but finds that performing a series of static measurements is both more accurate and computationally efficient.
利用卡尔曼滤波的红外物种有限数据断层扫描
在红外物种限制数据层析成像中,未知物种的空间浓度分布,例如燃烧室中的空气/燃料比,是由通过测量场的多个准直光束的衰减推断出来的。所得到的线性方程组是秩亏的,因此需要引入关于分布的平滑性和非负性的先验假设来恢复解。本文研究了卡尔曼滤波是否可以从衰减测量的观测时间演变中加入额外的信息,以进一步提高重建精度,但发现执行一系列静态测量既准确又计算效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信