Warping trajectories for video synchronization

S. Shankar, Joan Lasenby, A. Kokaram
{"title":"Warping trajectories for video synchronization","authors":"S. Shankar, Joan Lasenby, A. Kokaram","doi":"10.1145/2510650.2510654","DOIUrl":null,"url":null,"abstract":"Temporal synchronization of multiple video recordings of the same dynamic event is a critical task in many computer vision applications e.g. novel view synthesis and 3D reconstruction. Typically this information is implied, since recordings are made using the same timebase, or time-stamp information is embedded in the video streams. Recordings using consumer grade equipment do not contain this information; hence, there is a need to temporally synchronize signals using the visual information itself. Previous work in this area has either assumed good quality data with relatively simple dynamic content or the availability of precise camera geometry. In this paper, we propose a technique which exploits feature trajectories across views in a novel way, and specifically targets the kind of complex content found in consumer generated sports recordings, without assuming precise knowledge of fundamental matrices or homographies. Our method automatically selects the moving feature points in the two unsynchronized videos whose 2D trajectories can be best related, thereby helping to infer the synchronization index. We evaluate performance using a number of real recordings and show that synchronization can be achieved to within 1 sec, which is better than previous approaches.","PeriodicalId":360789,"journal":{"name":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","volume":"115 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2510650.2510654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Temporal synchronization of multiple video recordings of the same dynamic event is a critical task in many computer vision applications e.g. novel view synthesis and 3D reconstruction. Typically this information is implied, since recordings are made using the same timebase, or time-stamp information is embedded in the video streams. Recordings using consumer grade equipment do not contain this information; hence, there is a need to temporally synchronize signals using the visual information itself. Previous work in this area has either assumed good quality data with relatively simple dynamic content or the availability of precise camera geometry. In this paper, we propose a technique which exploits feature trajectories across views in a novel way, and specifically targets the kind of complex content found in consumer generated sports recordings, without assuming precise knowledge of fundamental matrices or homographies. Our method automatically selects the moving feature points in the two unsynchronized videos whose 2D trajectories can be best related, thereby helping to infer the synchronization index. We evaluate performance using a number of real recordings and show that synchronization can be achieved to within 1 sec, which is better than previous approaches.
视频同步的扭曲轨迹
同一动态事件的多个视频记录的时间同步在许多计算机视觉应用中是一项关键任务,例如新视图合成和3D重建。通常这些信息是隐含的,因为记录是使用相同的时间基进行的,或者时间戳信息嵌入到视频流中。使用消费级设备的录音不包含此信息;因此,需要使用视觉信息本身暂时同步信号。该领域以前的工作要么假设具有相对简单的动态内容的高质量数据,要么假设具有精确的相机几何形状。在本文中,我们提出了一种技术,该技术以一种新颖的方式利用视图之间的特征轨迹,并专门针对消费者生成的体育记录中发现的复杂内容,而无需假设对基本矩阵或同音异义词的精确知识。我们的方法自动选择两个非同步视频中二维轨迹相关度最好的运动特征点,从而有助于推断同步指标。我们使用大量真实记录来评估性能,并表明可以在1秒内实现同步,这比以前的方法要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信