Relacionando critérios de divisibilidades com sistemas de numeração

Thiago Cavalcante, R. Pimenta
{"title":"Relacionando critérios de divisibilidades com sistemas de numeração","authors":"Thiago Cavalcante, R. Pimenta","doi":"10.21711/2319023x2020/pmo1015","DOIUrl":null,"url":null,"abstract":"In this work we are going to relate the divisibility of a number to its numbering system on a given basis. More precisely, we determine when a number written on a given base r is divisible by ( r – 1 ) and ( r + 1 ) . We started from this generalization and obtained the well-known divisibility criteria for 9 and 11, when the number in question is written in the base r = 10. We use these concepts to solve math olympics exercises, graduate questions and unveil some common games in the circles of friends that, the secret answers, are directly linked to numbering systems.","PeriodicalId":274953,"journal":{"name":"Revista Professor de Matemática On line","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Professor de Matemática On line","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21711/2319023x2020/pmo1015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we are going to relate the divisibility of a number to its numbering system on a given basis. More precisely, we determine when a number written on a given base r is divisible by ( r – 1 ) and ( r + 1 ) . We started from this generalization and obtained the well-known divisibility criteria for 9 and 11, when the number in question is written in the base r = 10. We use these concepts to solve math olympics exercises, graduate questions and unveil some common games in the circles of friends that, the secret answers, are directly linked to numbering systems.
将可分割性标准与编号系统联系起来
在这项工作中,我们将在给定的基础上将数字的可整除性与其编号系统联系起来。更准确地说,我们确定以给定的r为底的数何时能被(r - 1)和(r + 1)整除。我们从这个推广开始,得到了众所周知的9和11的可整除性准则,当所讨论的数字以r = 10为基数时。我们用这些概念来解决数学奥林匹克练习、研究生问题,并揭示一些朋友圈中常见的游戏,这些游戏的秘密答案,与编号系统直接相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信