Energy Efficient Scale-In Clusters with In-Storage Processing for Big-Data Analytics

I. Choi, Yang-Suk Kee
{"title":"Energy Efficient Scale-In Clusters with In-Storage Processing for Big-Data Analytics","authors":"I. Choi, Yang-Suk Kee","doi":"10.1145/2818950.2818983","DOIUrl":null,"url":null,"abstract":"Big data drives a computing paradigm shift. Due to enormous data volumes, data-intensive programming frameworks are pervasive and scale-out clusters are widespread. As a result, data-movement energy dominates overall energy consumption and this will get worse with a technology scaling. We propose scale-in clusters with In-Storage Processing (ISP) devices that would enable energy efficient computing for big-data analytics. ISP devices eliminate/reduce data movements towards CPUs and execute tasks more energy-efficiently. Thus, with energy efficient computing near data and higher throughput enabled, clusters with ISP can achieve more than quadruple energy efficiency with fewer number of nodes as compared to the energy efficiency of similarly performing its counter-part scale-out clusters.","PeriodicalId":389462,"journal":{"name":"Proceedings of the 2015 International Symposium on Memory Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Memory Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818950.2818983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Big data drives a computing paradigm shift. Due to enormous data volumes, data-intensive programming frameworks are pervasive and scale-out clusters are widespread. As a result, data-movement energy dominates overall energy consumption and this will get worse with a technology scaling. We propose scale-in clusters with In-Storage Processing (ISP) devices that would enable energy efficient computing for big-data analytics. ISP devices eliminate/reduce data movements towards CPUs and execute tasks more energy-efficiently. Thus, with energy efficient computing near data and higher throughput enabled, clusters with ISP can achieve more than quadruple energy efficiency with fewer number of nodes as compared to the energy efficiency of similarly performing its counter-part scale-out clusters.
节能规模内集群与存储处理大数据分析
大数据推动了计算范式的转变。由于庞大的数据量,数据密集型编程框架非常普遍,横向扩展集群也很普遍。因此,数据移动能耗主导了整体能耗,随着技术的扩展,这种情况会变得更糟。我们建议使用存储处理(ISP)设备扩展集群,这将为大数据分析提供节能计算。ISP设备消除/减少了向cpu的数据移动,并更节能地执行任务。因此,通过启用近数据的节能计算和更高的吞吐量,具有ISP的集群可以使用更少的节点实现四倍以上的能源效率,而不是执行类似的对等部分横向扩展集群的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信