Medical image fusion using convolutional neural network

Arjun Kotwal, D. Kumar
{"title":"Medical image fusion using convolutional neural network","authors":"Arjun Kotwal, D. Kumar","doi":"10.33545/27076636.2023.v4.i1a.79","DOIUrl":null,"url":null,"abstract":"Medical image fusion methods combine medical pictures from many morphologies to improve the accuracy and reliability of medical diagnoses, and they are becoming more significant in a variety of clinical applications. This research introduces a convolutional neural network (CNN) based medical image fusion approach to create a fused picture with good visual quality and clear structural details. To generate a weight map, the proposed technique employs a trained Siamese convolutional network to fuse the pixel activity information of source pictures. Meanwhile, the original picture is decomposed using a contrast pyramid. Source pictures are combined using distinct spatial frequency bands and a weighted fusion operator. The suggested fusion method can successfully maintain the exact structural information of source pictures and generate excellent human visual effects, according to the findings of comparison trials.","PeriodicalId":127185,"journal":{"name":"International Journal of Computing, Programming and Database Management","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing, Programming and Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33545/27076636.2023.v4.i1a.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image fusion methods combine medical pictures from many morphologies to improve the accuracy and reliability of medical diagnoses, and they are becoming more significant in a variety of clinical applications. This research introduces a convolutional neural network (CNN) based medical image fusion approach to create a fused picture with good visual quality and clear structural details. To generate a weight map, the proposed technique employs a trained Siamese convolutional network to fuse the pixel activity information of source pictures. Meanwhile, the original picture is decomposed using a contrast pyramid. Source pictures are combined using distinct spatial frequency bands and a weighted fusion operator. The suggested fusion method can successfully maintain the exact structural information of source pictures and generate excellent human visual effects, according to the findings of comparison trials.
基于卷积神经网络的医学图像融合
医学图像融合方法将多种形态的医学图像结合在一起,以提高医学诊断的准确性和可靠性,在各种临床应用中变得越来越重要。本研究引入一种基于卷积神经网络(CNN)的医学图像融合方法,生成视觉质量好、结构细节清晰的融合图像。该方法采用经过训练的暹罗卷积网络融合源图像的像素活动信息来生成权重图。同时,对原始图像进行对比度金字塔分解。源图像使用不同的空间频带和加权融合算子进行组合。对比试验结果表明,所提出的融合方法能够很好地保持源图像的准确结构信息,并产生良好的人眼视觉效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信