S. Bano, A. Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, S. Meiklejohn, G. Danezis
{"title":"SoK: Consensus in the Age of Blockchains","authors":"S. Bano, A. Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, S. Meiklejohn, G. Danezis","doi":"10.1145/3318041.3355458","DOIUrl":null,"url":null,"abstract":"The core technical component of blockchains is consensus: how to reach agreement among a distributed network of nodes. A plethora of blockchain consensus protocols have been proposed---ranging from new designs, to novel modifications and extensions of consensus protocols from the classical distributed systems literature. The inherent complexity of consensus protocols and their rapid and dramatic evolution makes it hard to contextualize the design landscape. We address this challenge by conducting a systematization of knowledge of blockchain consensus protocols. After first discussing key themes in classical consensus protocols, we describe: (i) protocols based on proof-of-work; (ii) proof-of-X protocols that replace proof-of-work with more energy-efficient alternatives; and (iii) hybrid protocols that are compositions or variations of classical consensus protocols. This survey is guided by a systematization framework we develop, to highlight the various building blocks of blockchain consensus design, along with a discussion on their security and performance properties. We identify research gaps and insights for the community to consider in future research endeavours.","PeriodicalId":326009,"journal":{"name":"Proceedings of the 1st ACM Conference on Advances in Financial Technologies","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"399","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM Conference on Advances in Financial Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318041.3355458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 399
Abstract
The core technical component of blockchains is consensus: how to reach agreement among a distributed network of nodes. A plethora of blockchain consensus protocols have been proposed---ranging from new designs, to novel modifications and extensions of consensus protocols from the classical distributed systems literature. The inherent complexity of consensus protocols and their rapid and dramatic evolution makes it hard to contextualize the design landscape. We address this challenge by conducting a systematization of knowledge of blockchain consensus protocols. After first discussing key themes in classical consensus protocols, we describe: (i) protocols based on proof-of-work; (ii) proof-of-X protocols that replace proof-of-work with more energy-efficient alternatives; and (iii) hybrid protocols that are compositions or variations of classical consensus protocols. This survey is guided by a systematization framework we develop, to highlight the various building blocks of blockchain consensus design, along with a discussion on their security and performance properties. We identify research gaps and insights for the community to consider in future research endeavours.