Quantifying spatiotemporal dynamics of twitter replies to news feeds

F. Biessmann, Jens-Michalis Papaioannou, A. Harth, M. Jugel, K. Müller, M. Braun
{"title":"Quantifying spatiotemporal dynamics of twitter replies to news feeds","authors":"F. Biessmann, Jens-Michalis Papaioannou, A. Harth, M. Jugel, K. Müller, M. Braun","doi":"10.1109/MLSP.2012.6349806","DOIUrl":null,"url":null,"abstract":"Social network analysis can be used to assess the impact of information published on the web. The spatiotemporal impact of a certain web source on a social network can be of particular interest. We contribute a novel statistical learning algorithm for spatiotemporal impact analysis. To demonstrate our approach we analyze Twitter replies to individual news article along with their geospatial and temporal information. We then compute the multivariate spatiotemporal response pattern of all Twitter replies to information published on a given web source. This quantitative result can be interpreted with respect to a) how much impact a certain web source has on the Twitter-sphere b) where and c) when it reaches it maximal impact. We also show that the proposed approach predicts the dynamics of the social network activity better than classical trend detection methods.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Social network analysis can be used to assess the impact of information published on the web. The spatiotemporal impact of a certain web source on a social network can be of particular interest. We contribute a novel statistical learning algorithm for spatiotemporal impact analysis. To demonstrate our approach we analyze Twitter replies to individual news article along with their geospatial and temporal information. We then compute the multivariate spatiotemporal response pattern of all Twitter replies to information published on a given web source. This quantitative result can be interpreted with respect to a) how much impact a certain web source has on the Twitter-sphere b) where and c) when it reaches it maximal impact. We also show that the proposed approach predicts the dynamics of the social network activity better than classical trend detection methods.
量化twitter对新闻feed回复的时空动态
社会网络分析可以用来评估在网络上发布的信息的影响。特定网络资源对社交网络的时空影响可能是特别有趣的。我们提出了一种新的时空影响分析统计学习算法。为了演示我们的方法,我们分析了Twitter对个别新闻文章的回复及其地理空间和时间信息。然后,我们计算了所有Twitter对发布在给定web源上的信息的回复的多变量时空响应模式。这个定量结果可以通过以下几个方面来解释:a)某个网络资源对twitter领域的影响有多大;b)在哪里;c)何时达到最大影响。我们还表明,该方法比传统的趋势检测方法更能预测社交网络活动的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信