Proposal of Simulation Materials Test Technique and Their Constitutive Equations for Structural Tests and Analyses Simulating Severe Accident Conditions
Ryuta Hashidate, S. Kato, T. Onizawa, T. Wakai, N. Kasahara
{"title":"Proposal of Simulation Materials Test Technique and Their Constitutive Equations for Structural Tests and Analyses Simulating Severe Accident Conditions","authors":"Ryuta Hashidate, S. Kato, T. Onizawa, T. Wakai, N. Kasahara","doi":"10.1115/pvp2020-21397","DOIUrl":null,"url":null,"abstract":"\n Nuclear structure’s integrity must be confirmed under severe accident conditions. However, performing structure tests using actual steels is very difficult and expensive. Therefore, the authors conducted structure tests using the lead alloy to evaluate the structure integrity under severe accident conditions. Because the strength of the lead alloy is considerably less than that of actual steels, structure tests can be conducted under low-pressure, low-temperature conditions. To quantitatively correlate the structural response of the lead alloy to that of actual steels, finite-element analyses (FEAs) must be performed. Because the inelastic constitutive equations, namely, inelastic stress–strain relationship equation, creep rupture equation, and creep strain equation, are required to perform the inelastic FEA, the authors introduced material tests using the lead alloy and, subsequently, proposed the inelastic constitutive equations based on the material test results in a previously conducted PVP conference. However, the proposed inelastic constitutive equations could not successfully express the material characteristic of the lead alloy because of large variations observed in the material tests of the lead alloy. Furthermore, the authors observed that the material characteristic of the lead alloy could be stabilized by aging. In this study, we propose the improved inelastic constitutive equations of the lead alloy on the basis of test results newly obtained from a series of material test performed using aged alloy.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2020-21397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear structure’s integrity must be confirmed under severe accident conditions. However, performing structure tests using actual steels is very difficult and expensive. Therefore, the authors conducted structure tests using the lead alloy to evaluate the structure integrity under severe accident conditions. Because the strength of the lead alloy is considerably less than that of actual steels, structure tests can be conducted under low-pressure, low-temperature conditions. To quantitatively correlate the structural response of the lead alloy to that of actual steels, finite-element analyses (FEAs) must be performed. Because the inelastic constitutive equations, namely, inelastic stress–strain relationship equation, creep rupture equation, and creep strain equation, are required to perform the inelastic FEA, the authors introduced material tests using the lead alloy and, subsequently, proposed the inelastic constitutive equations based on the material test results in a previously conducted PVP conference. However, the proposed inelastic constitutive equations could not successfully express the material characteristic of the lead alloy because of large variations observed in the material tests of the lead alloy. Furthermore, the authors observed that the material characteristic of the lead alloy could be stabilized by aging. In this study, we propose the improved inelastic constitutive equations of the lead alloy on the basis of test results newly obtained from a series of material test performed using aged alloy.