A collaborative filtering recommendation algorithm based on improved similarity measure method

Y. Wu, Jianguo Zheng
{"title":"A collaborative filtering recommendation algorithm based on improved similarity measure method","authors":"Y. Wu, Jianguo Zheng","doi":"10.1109/PIC.2010.5687455","DOIUrl":null,"url":null,"abstract":"Collaborative filtering recommendation algorithm is one of the most successful technologies in the e-commerce recommendation system. With the development of e-commerce, the magnitudes of users and commodities grow rapidly; the performance of traditional recommendation algorithm is getting worse. So propose a new similarity measure method, automatically generate weighting factor to combine dynamically item attribute similarity and score similarity, form a reasonable item similarity, which bring the nearest neighbors of item, and predict the item's rating to recommend. The experimental results show the algorithm enhance the steady and precision of recommendation, solve cold start issue.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5687455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Collaborative filtering recommendation algorithm is one of the most successful technologies in the e-commerce recommendation system. With the development of e-commerce, the magnitudes of users and commodities grow rapidly; the performance of traditional recommendation algorithm is getting worse. So propose a new similarity measure method, automatically generate weighting factor to combine dynamically item attribute similarity and score similarity, form a reasonable item similarity, which bring the nearest neighbors of item, and predict the item's rating to recommend. The experimental results show the algorithm enhance the steady and precision of recommendation, solve cold start issue.
一种基于改进相似度量方法的协同过滤推荐算法
协同过滤推荐算法是电子商务推荐系统中最成功的技术之一。随着电子商务的发展,用户规模和商品规模迅速增长;传统推荐算法的性能越来越差。为此,提出了一种新的相似度度量方法,自动生成加权因子,动态地将物品属性相似度和得分相似度结合起来,形成一个合理的物品相似度,从而带来物品的最近邻,并预测物品的评分推荐。实验结果表明,该算法提高了推荐的稳定性和精度,解决了冷启动问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信