Bounded perturbation resilience of generalized viscosity iterative algorithms for split variational inclusion problems

Peichao Duan, Xubang Zheng
{"title":"Bounded perturbation resilience of generalized viscosity iterative algorithms for split variational inclusion problems","authors":"Peichao Duan, Xubang Zheng","doi":"10.23952/asvao.2.2020.1.04","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a generalized viscosity approximation method combing a sequence of contractive mappings to solve a split variational inclusion problem. The bounded perturbation resilience of the method is investigated in Hilbert spaces. Under mild conditions, we prove that our algorithms strongly converge to a solution of the split variational inclusion problem, which is also the unique solution of some variational inequality problem. Furthermore, we show the convergence and effectiveness of the algorithms via two numerical examples. Our results extend and improve the related results in the literature.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/asvao.2.2020.1.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a generalized viscosity approximation method combing a sequence of contractive mappings to solve a split variational inclusion problem. The bounded perturbation resilience of the method is investigated in Hilbert spaces. Under mild conditions, we prove that our algorithms strongly converge to a solution of the split variational inclusion problem, which is also the unique solution of some variational inequality problem. Furthermore, we show the convergence and effectiveness of the algorithms via two numerical examples. Our results extend and improve the related results in the literature.
分裂变分包含问题广义黏度迭代算法的有界扰动弹性
本文提出了一种结合一系列压缩映射的广义黏度近似方法来解决分裂变分包含问题。研究了该方法在Hilbert空间中的有界摄动弹性。在温和条件下,我们证明了我们的算法强收敛于分裂变分包含问题的一个解,该解也是某些变分不等式问题的唯一解。并通过两个算例说明了算法的收敛性和有效性。我们的结果扩展和改进了文献中的相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信