On-line handwritten formula recognition using hidden Markov models and context dependent graph grammars

A. Kosmala, G. Rigoll, S. Lavirotte, L. Pottier
{"title":"On-line handwritten formula recognition using hidden Markov models and context dependent graph grammars","authors":"A. Kosmala, G. Rigoll, S. Lavirotte, L. Pottier","doi":"10.1109/ICDAR.1999.791736","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for the recognition of on-line handwritten mathematical expressions. The hidden Markov model (HMM) based system makes use of simultaneous segmentation and recognition capabilities, avoiding a crucial segmentation during pre-processing. With the segmentation and recognition results, obtained from the HMM recognizer it is possible to analyze and interpret the spatial two-dimensional arrangement of the symbols. We use a graph grammar approach for the structure recognition, also used in off-line recognition process, resulting in a general tree-structure of the underlying input-expression. The resulting constructed tree can be translated to any desired syntax (for example: Lisp, KT/sub E/X, and OpenMath).","PeriodicalId":130039,"journal":{"name":"Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99 (Cat. No.PR00318)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99 (Cat. No.PR00318)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1999.791736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

This paper presents an approach for the recognition of on-line handwritten mathematical expressions. The hidden Markov model (HMM) based system makes use of simultaneous segmentation and recognition capabilities, avoiding a crucial segmentation during pre-processing. With the segmentation and recognition results, obtained from the HMM recognizer it is possible to analyze and interpret the spatial two-dimensional arrangement of the symbols. We use a graph grammar approach for the structure recognition, also used in off-line recognition process, resulting in a general tree-structure of the underlying input-expression. The resulting constructed tree can be translated to any desired syntax (for example: Lisp, KT/sub E/X, and OpenMath).
使用隐马尔可夫模型和上下文相关图语法的在线手写公式识别
本文提出了一种在线手写数学表达式的识别方法。基于隐马尔可夫模型(HMM)的系统利用了同时分割和识别的能力,避免了在预处理过程中进行关键的分割。利用HMM识别器获得的分割和识别结果,可以对符号的空间二维排列进行分析和解释。我们使用图语法方法进行结构识别,也用于离线识别过程,从而得到底层输入表达式的一般树状结构。生成的树可以被翻译成任何所需的语法(例如:Lisp、KT/sub E/X和OpenMath)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信