A unifying viewpoint of some clustering techniques using Bregman divergences and extensions to mixed data sets

C. Levasseur, B. Burdge, K. Kreutz-Delgado, U. Mayer
{"title":"A unifying viewpoint of some clustering techniques using Bregman divergences and extensions to mixed data sets","authors":"C. Levasseur, B. Burdge, K. Kreutz-Delgado, U. Mayer","doi":"10.1109/ICCITECHN.2008.4803110","DOIUrl":null,"url":null,"abstract":"We present a general viewpoint using Bregman divergences and exponential family properties that contains as special cases the three following algorithms: 1) exponential family principal component analysis (exponential PCA), 2) Semi-Parametric exponential family principal component analysis (SP-PCA) and 3) Bregman soft clustering. This framework is equivalent to a mixed data-type hierarchical Bayes graphical model assumption with latent variables constrained to a low-dimensional parameter subspace. We show that within this framework exponential PCA and SPPCA are similar to the Bregman soft clustering technique with the addition of a linear constraint in the parameter space. We implement the resulting modifications to SP-PCA and Bregman soft clustering for mixed (continuous and/or discrete) data sets, and add a nonparametric estimation of the point-mass probabilities to exponential PCA. Finally, we compare the relative performances of the three algorithms in a clustering setting for mixed data sets.","PeriodicalId":335795,"journal":{"name":"2008 11th International Conference on Computer and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th International Conference on Computer and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2008.4803110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a general viewpoint using Bregman divergences and exponential family properties that contains as special cases the three following algorithms: 1) exponential family principal component analysis (exponential PCA), 2) Semi-Parametric exponential family principal component analysis (SP-PCA) and 3) Bregman soft clustering. This framework is equivalent to a mixed data-type hierarchical Bayes graphical model assumption with latent variables constrained to a low-dimensional parameter subspace. We show that within this framework exponential PCA and SPPCA are similar to the Bregman soft clustering technique with the addition of a linear constraint in the parameter space. We implement the resulting modifications to SP-PCA and Bregman soft clustering for mixed (continuous and/or discrete) data sets, and add a nonparametric estimation of the point-mass probabilities to exponential PCA. Finally, we compare the relative performances of the three algorithms in a clustering setting for mixed data sets.
用Bregman散度和扩展对混合数据集的聚类技术的统一观点
本文从Bregman散度和指数族性质出发,提出了一种一般性的观点,其中包含以下三种算法:1)指数族主成分分析(exponential PCA), 2)半参数指数族主成分分析(SP-PCA)和3)Bregman软聚类。该框架相当于一个混合数据类型的分层贝叶斯图形模型假设,其中潜在变量约束于低维参数子空间。我们发现在这个框架下,指数主成分分析和SPPCA类似于Bregman软聚类技术,只是在参数空间中增加了一个线性约束。我们将结果修改为SP-PCA和Bregman软聚类,用于混合(连续和/或离散)数据集,并在指数PCA中添加点质量概率的非参数估计。最后,我们比较了三种算法在混合数据集聚类设置下的相对性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信