Cross-domain clustering performed by transfer of knowledge across domains

Suranjana Samanta, T. Selvan, Sukhendu Das
{"title":"Cross-domain clustering performed by transfer of knowledge across domains","authors":"Suranjana Samanta, T. Selvan, Sukhendu Das","doi":"10.1109/NCVPRIPG.2013.6776213","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to improve the results of clustering in a target domain, using significant information from an auxiliary (source) domain dataset. The applicability of this method concerns the field of transfer learning (or domain adaptation), where the performance of a task (say, classification using clustering) in one domain is improved using knowledge obtained from a similar domain. We propose two unsupervised methods of cross-domain clustering and show results on two different categories of benchmark datasets, both having difference in density distributions over the pair of domains. In the first method, we propose an iterative framework, where the clustering in the target domain is influenced by the clusters formed in the source domain and vice-versa. Similarity/dissimilarity measures have been appropriately formulated using Euclidean distance and Bregman Divergence, for cross-domain clustering. In the second method, we perform clustering in the target domain by estimating local density computed using a non-parametric (NP) density estimator (due to less number of samples). Prior to clustering, the NP-density scattering in the target domain is modified using information of cluster density distribution in source domain. Results shown on real-world datasets suggest that the proposed methods of cross-domain clustering are comparable to the recent start-of-the-art work.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we propose a method to improve the results of clustering in a target domain, using significant information from an auxiliary (source) domain dataset. The applicability of this method concerns the field of transfer learning (or domain adaptation), where the performance of a task (say, classification using clustering) in one domain is improved using knowledge obtained from a similar domain. We propose two unsupervised methods of cross-domain clustering and show results on two different categories of benchmark datasets, both having difference in density distributions over the pair of domains. In the first method, we propose an iterative framework, where the clustering in the target domain is influenced by the clusters formed in the source domain and vice-versa. Similarity/dissimilarity measures have been appropriately formulated using Euclidean distance and Bregman Divergence, for cross-domain clustering. In the second method, we perform clustering in the target domain by estimating local density computed using a non-parametric (NP) density estimator (due to less number of samples). Prior to clustering, the NP-density scattering in the target domain is modified using information of cluster density distribution in source domain. Results shown on real-world datasets suggest that the proposed methods of cross-domain clustering are comparable to the recent start-of-the-art work.
通过跨领域的知识转移实现跨领域聚类
在本文中,我们提出了一种利用辅助(源)领域数据集的重要信息来改进目标领域聚类结果的方法。该方法的适用性涉及迁移学习(或领域适应)领域,其中一个领域的任务(例如,使用聚类进行分类)的性能使用从类似领域获得的知识来改进。我们提出了两种无监督的跨域聚类方法,并在两种不同类别的基准数据集上展示了结果,这两种方法在对域上的密度分布都不同。在第一种方法中,我们提出了一个迭代框架,其中目标域中的聚类受到源域中形成的聚类的影响,反之亦然。对于跨域聚类,使用欧几里得距离和布雷格曼散度适当地制定了相似/不相似度量。在第二种方法中,我们通过估计使用非参数(NP)密度估计器计算的局部密度(由于样本数量较少)在目标域中进行聚类。在聚类之前,利用源域的聚类密度分布信息对目标域的np密度散射进行修正。在真实世界数据集上显示的结果表明,所提出的跨域聚类方法与最近开始的艺术工作相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信