A Particle Filtering Algorithm for Audiovisual Speaker Localisation

C. Voges, P. Bauer, T. Fingscheidt
{"title":"A Particle Filtering Algorithm for Audiovisual Speaker Localisation","authors":"C. Voges, P. Bauer, T. Fingscheidt","doi":"10.1109/WPNC.2007.353619","DOIUrl":null,"url":null,"abstract":"In modern and innovative videoconference systems and human machine interfaces, localisation techniques play an important role for automatic camera and beamformer steering. Conventional acoustical and visual localisation techniques can be combined to form an audiovisual joint location estimate providing a more robust localisation of the active person. Tracking algorithms such as the well-known Kalman or extended Kalman filter and also particle filters can serve to further improve the location estimates. This paper is about a problem-specific SIR particle filtering algorithm applied to an existing audiovisual speaker localisation. The performance of the suggested algorithm will be evaluated using real audiovisual data based on experiments. It turns out that the proposed algorithm is able to improve the audiovisual location estimates.","PeriodicalId":382984,"journal":{"name":"2007 4th Workshop on Positioning, Navigation and Communication","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 4th Workshop on Positioning, Navigation and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2007.353619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In modern and innovative videoconference systems and human machine interfaces, localisation techniques play an important role for automatic camera and beamformer steering. Conventional acoustical and visual localisation techniques can be combined to form an audiovisual joint location estimate providing a more robust localisation of the active person. Tracking algorithms such as the well-known Kalman or extended Kalman filter and also particle filters can serve to further improve the location estimates. This paper is about a problem-specific SIR particle filtering algorithm applied to an existing audiovisual speaker localisation. The performance of the suggested algorithm will be evaluated using real audiovisual data based on experiments. It turns out that the proposed algorithm is able to improve the audiovisual location estimates.
一种用于视听说话人定位的粒子滤波算法
在现代和创新的视频会议系统和人机界面中,定位技术对自动摄像机和波束形成器的转向起着重要的作用。传统的声学和视觉定位技术可以结合起来形成视听关节位置估计,提供对活动人员更稳健的定位。跟踪算法,如著名的卡尔曼或扩展卡尔曼滤波和粒子滤波可以进一步改善位置估计。本文研究了一种针对特定问题的SIR粒子滤波算法,并将其应用于现有的视听说话人定位。在实验的基础上,利用真实的视听数据对算法的性能进行评价。实验结果表明,该算法能够有效地提高视听定位估计的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信