Robust Tests for Convergence Clubs

L. Corrado, T. Stengos, M. Weeks, M. Yazgan
{"title":"Robust Tests for Convergence Clubs","authors":"L. Corrado, T. Stengos, M. Weeks, M. Yazgan","doi":"10.2139/ssrn.3333113","DOIUrl":null,"url":null,"abstract":"In many applications common in testing for convergence the number of cross-sectional units is large and the number of time periods are few. In these situations asymptotic tests based on an omnibus null hypothesis are characterised by a number of problems. In this paper we propose a multiple pairwise comparisons method based on an a recursive bootstrap to test for convergence with no prior information on the composition of convergence clubs. Monte Carlo simulations suggest that our bootstrap-based test performs well to correctly identify convergence clubs when compared with other similar tests that rely on asymptotic arguments. Across a potentially large number of regions, using both cross-country and regional data for the European Union we find that the size distortion which afflicts standard tests and results in a bias towards finnding less convergence, is ameliorated when we utilise our bootstrap test.","PeriodicalId":365494,"journal":{"name":"CEIS: Econometrics & Empirical Economics (Topic)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Econometrics & Empirical Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3333113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In many applications common in testing for convergence the number of cross-sectional units is large and the number of time periods are few. In these situations asymptotic tests based on an omnibus null hypothesis are characterised by a number of problems. In this paper we propose a multiple pairwise comparisons method based on an a recursive bootstrap to test for convergence with no prior information on the composition of convergence clubs. Monte Carlo simulations suggest that our bootstrap-based test performs well to correctly identify convergence clubs when compared with other similar tests that rely on asymptotic arguments. Across a potentially large number of regions, using both cross-country and regional data for the European Union we find that the size distortion which afflicts standard tests and results in a bias towards finnding less convergence, is ameliorated when we utilise our bootstrap test.
收敛俱乐部的鲁棒性测试
在收敛性测试中常见的许多应用中,截面单元的数量很大,而时间段的数量很少。在这些情况下,基于综合零假设的渐近检验有许多问题。在本文中,我们提出了一种基于递归自举的多重两两比较方法来检验收敛俱乐部组成的无先验信息的收敛性。蒙特卡罗模拟表明,与依赖渐近参数的其他类似测试相比,我们基于引导的测试在正确识别收敛俱乐部方面表现良好。在潜在的大量地区,使用欧盟的跨国和区域数据,我们发现,当我们使用我们的引导测试时,影响标准测试并导致倾向于寻找较少收敛性的大小扭曲得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信