{"title":"Robust Tests for Convergence Clubs","authors":"L. Corrado, T. Stengos, M. Weeks, M. Yazgan","doi":"10.2139/ssrn.3333113","DOIUrl":null,"url":null,"abstract":"In many applications common in testing for convergence the number of cross-sectional units is large and the number of time periods are few. In these situations asymptotic tests based on an omnibus null hypothesis are characterised by a number of problems. In this paper we propose a multiple pairwise comparisons method based on an a recursive bootstrap to test for convergence with no prior information on the composition of convergence clubs. Monte Carlo simulations suggest that our bootstrap-based test performs well to correctly identify convergence clubs when compared with other similar tests that rely on asymptotic arguments. Across a potentially large number of regions, using both cross-country and regional data for the European Union we find that the size distortion which afflicts standard tests and results in a bias towards finnding less convergence, is ameliorated when we utilise our bootstrap test.","PeriodicalId":365494,"journal":{"name":"CEIS: Econometrics & Empirical Economics (Topic)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Econometrics & Empirical Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3333113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In many applications common in testing for convergence the number of cross-sectional units is large and the number of time periods are few. In these situations asymptotic tests based on an omnibus null hypothesis are characterised by a number of problems. In this paper we propose a multiple pairwise comparisons method based on an a recursive bootstrap to test for convergence with no prior information on the composition of convergence clubs. Monte Carlo simulations suggest that our bootstrap-based test performs well to correctly identify convergence clubs when compared with other similar tests that rely on asymptotic arguments. Across a potentially large number of regions, using both cross-country and regional data for the European Union we find that the size distortion which afflicts standard tests and results in a bias towards finnding less convergence, is ameliorated when we utilise our bootstrap test.