Research on COIL employing no-flake-nozzle and CO2 as buffer gas

Ming-xiu Xu, F. Sang, Yuelong Zhang, Benjie Fang, Yuqi Jin
{"title":"Research on COIL employing no-flake-nozzle and CO2 as buffer gas","authors":"Ming-xiu Xu, F. Sang, Yuelong Zhang, Benjie Fang, Yuqi Jin","doi":"10.1117/12.2065089","DOIUrl":null,"url":null,"abstract":"The supersonic nozzles lower temperature to 170-180 K better for the small signal gain coefficient. But at this temperature, the CO2 buffer gas may become liquid state. A chemical oxygen-iodine laser (COIL) employing CO2 as buffer gas and no-flake-nozzle was studied. Some mathematical simulation in three-dimensional computation fluid dynamics was adopted first to validate its usability. New nozzles gave the temperature higher than 400 K and considerable small signal gain coefficient. In the same conditions as simulation, experiments gave a 23% of chemical efficiency and 2.5 kW of output power. And it have got rid of “black area”, which was familiar in the supersonic COIL both in simulation and experimental results.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"9255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on High Power Laser Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2065089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The supersonic nozzles lower temperature to 170-180 K better for the small signal gain coefficient. But at this temperature, the CO2 buffer gas may become liquid state. A chemical oxygen-iodine laser (COIL) employing CO2 as buffer gas and no-flake-nozzle was studied. Some mathematical simulation in three-dimensional computation fluid dynamics was adopted first to validate its usability. New nozzles gave the temperature higher than 400 K and considerable small signal gain coefficient. In the same conditions as simulation, experiments gave a 23% of chemical efficiency and 2.5 kW of output power. And it have got rid of “black area”, which was familiar in the supersonic COIL both in simulation and experimental results.
以CO2为缓冲气体的无片喷嘴COIL的研究
超声速喷管温度降低到170- 180k较好,信号增益系数小。但在这个温度下,二氧化碳缓冲气体可能变成液态。研究了以CO2为缓冲气体、无片状喷嘴的化学氧碘激光器(COIL)。首先采用三维计算流体力学中的一些数学模拟来验证其可用性。新型喷嘴的温度高于400k,信号增益系数相当小。在与模拟相同的条件下,实验给出了23%的化学效率和2.5 kW的输出功率。并且在仿真和实验结果中都去掉了超声速线圈中常见的“黑区”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信