Statistic Analysis for Probabilistic Processes

M. D. Rougemont, M. Tracol
{"title":"Statistic Analysis for Probabilistic Processes","authors":"M. D. Rougemont, M. Tracol","doi":"10.1109/LICS.2009.36","DOIUrl":null,"url":null,"abstract":"We associate a statistical vector to a trace and a geometrical embedding to a Markov Decision Process, based on a distance on words, and study basic Membership and Equivalence problems. The Membership problem for a trace \\textit{w} and a Markov Decision Process \\textit{S} decides if there exists a strategy on \\textit{S} which generates with high probability traces close to \\textit{w}. We prove that Membership of a trace is \\emph{testable} and Equivalence of MDPs is polynomial time approximable. For Probabilistic Automata, Membership is not testable, and approximate Equivalence is undecidable. We give a class of properties, based on results concerning the structure of the tail sigma-field of a finite Markov chain, which characterizes equivalent Markov Decision Processes in this context.","PeriodicalId":415902,"journal":{"name":"2009 24th Annual IEEE Symposium on Logic In Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Symposium on Logic In Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2009.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We associate a statistical vector to a trace and a geometrical embedding to a Markov Decision Process, based on a distance on words, and study basic Membership and Equivalence problems. The Membership problem for a trace \textit{w} and a Markov Decision Process \textit{S} decides if there exists a strategy on \textit{S} which generates with high probability traces close to \textit{w}. We prove that Membership of a trace is \emph{testable} and Equivalence of MDPs is polynomial time approximable. For Probabilistic Automata, Membership is not testable, and approximate Equivalence is undecidable. We give a class of properties, based on results concerning the structure of the tail sigma-field of a finite Markov chain, which characterizes equivalent Markov Decision Processes in this context.
概率过程的统计分析
我们将统计向量与轨迹关联,将几何嵌入与马尔可夫决策过程关联,基于词的距离,研究基本的隶属性和等价性问题。迹线\textit{w}和马尔可夫决策过程\textit{s}的隶属性问题决定了在\textit{s}上是否存在一个策略,该策略产生接近\textit{w}的高概率迹线。证明了迹的隶属性为\emph{可测试的},并证明了mdp的等价性是多项式时间近似的。对于概率自动机,隶属性是不可检验的,近似等价性是不可判定的。基于有限马尔可夫链尾sigma域结构的结果,给出了一类表征等价马尔可夫决策过程的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信