Hierarchical motion history images for recognizing human motion

James W. Davis
{"title":"Hierarchical motion history images for recognizing human motion","authors":"James W. Davis","doi":"10.1109/EVENT.2001.938864","DOIUrl":null,"url":null,"abstract":"There has been increasing interest in computer analysis and recognition of human motion. Previously we presented an efficient real-time approach for representing human motion using a compact \"motion history image\" (MHI). Recognition was achieved by statistically matching moment-based features. To address previous problems related to global analysis and limited recognition, we present a hierarchical extension to the original MHI framework to compute dense (local) motion flow directly from the MHI. A hierarchical partitioning of motions by speed in an MHI pyramid enables efficient calculation of image motions using fixed-size gradient operators. To characterize the resulting motion field, a polar histogram of motion orientations is described. The hierarchical MHI approach remains a computationally inexpensive method for analysis of human motions.","PeriodicalId":375539,"journal":{"name":"Proceedings IEEE Workshop on Detection and Recognition of Events in Video","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"206","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Detection and Recognition of Events in Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVENT.2001.938864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 206

Abstract

There has been increasing interest in computer analysis and recognition of human motion. Previously we presented an efficient real-time approach for representing human motion using a compact "motion history image" (MHI). Recognition was achieved by statistically matching moment-based features. To address previous problems related to global analysis and limited recognition, we present a hierarchical extension to the original MHI framework to compute dense (local) motion flow directly from the MHI. A hierarchical partitioning of motions by speed in an MHI pyramid enables efficient calculation of image motions using fixed-size gradient operators. To characterize the resulting motion field, a polar histogram of motion orientations is described. The hierarchical MHI approach remains a computationally inexpensive method for analysis of human motions.
用于人体运动识别的分层运动历史图像
人们对计算机对人体运动的分析和识别越来越感兴趣。之前,我们提出了一种使用紧凑的“运动历史图像”(MHI)来表示人体运动的有效实时方法。通过统计匹配基于矩的特征来实现识别。为了解决先前与全局分析和有限识别相关的问题,我们提出了原始MHI框架的分层扩展,以直接从MHI计算密集(局部)运动流。在MHI金字塔中,通过速度对运动进行分层划分,可以使用固定大小的梯度算子有效地计算图像运动。为了描述产生的运动场,描述了运动方向的极直方图。分层MHI方法仍然是一种计算成本低廉的人体运动分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信