Exploring structural modeling of proteins for kernel-based enzyme discrimination

Marco A. Alvarez, Changhui Yan
{"title":"Exploring structural modeling of proteins for kernel-based enzyme discrimination","authors":"Marco A. Alvarez, Changhui Yan","doi":"10.1109/CIBCB.2010.5510588","DOIUrl":null,"url":null,"abstract":"Computational methods play an important role in investigating the relationships between protein structure and function. In this study, we evaluate different graph representations of protein structures for kernel-based protein function prediction. We use shortest path graph kernels and support vector machines to predict whether a protein is an enzyme or not. We present three different and straightforward strategies for modeling protein structures. Accuracy averages for 10-fold cross-validation range from 84.31% to 86.97% for different modeling strategies, outperforming state-of-the-art work.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Computational methods play an important role in investigating the relationships between protein structure and function. In this study, we evaluate different graph representations of protein structures for kernel-based protein function prediction. We use shortest path graph kernels and support vector machines to predict whether a protein is an enzyme or not. We present three different and straightforward strategies for modeling protein structures. Accuracy averages for 10-fold cross-validation range from 84.31% to 86.97% for different modeling strategies, outperforming state-of-the-art work.
探索基于核酶识别的蛋白质结构建模
计算方法在研究蛋白质结构与功能之间的关系方面发挥着重要作用。在这项研究中,我们评估了基于核的蛋白质功能预测中蛋白质结构的不同图表示。我们使用最短路径图核和支持向量机来预测蛋白质是否是酶。我们提出了三种不同的和直接的策略来建模蛋白质结构。对于不同的建模策略,10倍交叉验证的平均准确率从84.31%到86.97%不等,优于最先进的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信