Suspect-Adapted MAP Estimation of Within-Source Distributions in Generative Likelihood Ratio Estimation

D. Ramos, J. González-Rodríguez, A. Montero-Asenjo, J. Ortega-Garcia
{"title":"Suspect-Adapted MAP Estimation of Within-Source Distributions in Generative Likelihood Ratio Estimation","authors":"D. Ramos, J. González-Rodríguez, A. Montero-Asenjo, J. Ortega-Garcia","doi":"10.1109/ODYSSEY.2006.248090","DOIUrl":null,"url":null,"abstract":"In this paper, a novel suspect-adaptive technique for robust Bayesian forensic speaker recognition via maximum a posteriori (MAP) estimation is presented, which addresses likelihood ratio (LR) computation in limited suspect speech data conditions obtaining good calibration performance. Robustness is achieved by the use of speaker-independent information, adapting it to the specificities of the suspect involved in the process. Thus, this procedure allows the system to weight the relevance of the suspect specificities depending on the amount of suspect data available via MAP estimation. Experimental results show robustness to suspect data scarcity and stable performance for any amount of suspect material. Also, the proposed technique outperforms other previously proposed non-adaptive approaches. Results are presented as discrimination capabilities (DET plots), distributions of LRs (Tippett plots) and expected cost of wrong decisions over any prior or decision cost (Cllr). The use of such evaluation metrics allows us to highlight the importance of LR calibration in the performance of a forensic system","PeriodicalId":215883,"journal":{"name":"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Odyssey - The Speaker and Language Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ODYSSEY.2006.248090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, a novel suspect-adaptive technique for robust Bayesian forensic speaker recognition via maximum a posteriori (MAP) estimation is presented, which addresses likelihood ratio (LR) computation in limited suspect speech data conditions obtaining good calibration performance. Robustness is achieved by the use of speaker-independent information, adapting it to the specificities of the suspect involved in the process. Thus, this procedure allows the system to weight the relevance of the suspect specificities depending on the amount of suspect data available via MAP estimation. Experimental results show robustness to suspect data scarcity and stable performance for any amount of suspect material. Also, the proposed technique outperforms other previously proposed non-adaptive approaches. Results are presented as discrimination capabilities (DET plots), distributions of LRs (Tippett plots) and expected cost of wrong decisions over any prior or decision cost (Cllr). The use of such evaluation metrics allows us to highlight the importance of LR calibration in the performance of a forensic system
生成似然比估计中源内分布的怀疑自适应MAP估计
本文提出了一种基于最大后验估计的可疑自适应鲁棒贝叶斯法证说话人识别技术,该技术解决了有限可疑语音数据条件下的似然比计算问题,获得了良好的校准性能。鲁棒性是通过使用与说话人无关的信息来实现的,使其适应过程中涉及的嫌疑人的特殊性。因此,该程序允许系统根据通过MAP估计获得的可疑数据的数量来对可疑特异性的相关性进行加权。实验结果表明,该算法对可疑数据的稀缺性具有鲁棒性,对任意数量的可疑材料具有稳定的性能。此外,所提出的技术优于其他先前提出的非自适应方法。结果显示为识别能力(DET图)、LRs分布(Tippett图)和错误决策的预期成本(Cllr)。使用这样的评估指标使我们能够强调LR校准在法医系统性能中的重要性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信