Haixue Yan, F. Inam, G. Viola, H. Ning, Hongtao Zhang, Q. Jiang, Tao Zeng, Zhipeng Gao, M. Reece
{"title":"The Contribution of Electrical Conductivity, Dielectric Permittivity and Domain Switching in Ferroelectric Hysteresis Loops","authors":"Haixue Yan, F. Inam, G. Viola, H. Ning, Hongtao Zhang, Q. Jiang, Tao Zeng, Zhipeng Gao, M. Reece","doi":"10.1142/S2010135X11000148","DOIUrl":null,"url":null,"abstract":"Triangular voltage waveform was employed to distinguish the contributions of dielectric permittivity, electric conductivity and domain switching in current-electric field curves. At the same time, it is shown how those contributions can affect the shape of the electric displacement — electric field loops (D–E loops). The effects of frequency, temperature and microstructure (point defects, grain size and texture) on the ferroelectric properties of several ferroelectric compositions is reported, including: BaTiO3; lead zirconate titanate (PZT); lead-free Na0.5K0.5NbO3; perovskite-like layer structured A2B2O7 with super high Curie point (Tc); Aurivillius phase ferroelectric Bi3.15Nd0.5Ti3O12; and multiferroic Bi0.89La0.05Tb0.06FeO3. This systematic study provides an instructive outline in the measurement of ferroelectric properties and the analysis and interpretation of experimental data.","PeriodicalId":178335,"journal":{"name":"Progress in Advanced Dielectrics","volume":"83 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"210","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Advanced Dielectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2010135X11000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 210
Abstract
Triangular voltage waveform was employed to distinguish the contributions of dielectric permittivity, electric conductivity and domain switching in current-electric field curves. At the same time, it is shown how those contributions can affect the shape of the electric displacement — electric field loops (D–E loops). The effects of frequency, temperature and microstructure (point defects, grain size and texture) on the ferroelectric properties of several ferroelectric compositions is reported, including: BaTiO3; lead zirconate titanate (PZT); lead-free Na0.5K0.5NbO3; perovskite-like layer structured A2B2O7 with super high Curie point (Tc); Aurivillius phase ferroelectric Bi3.15Nd0.5Ti3O12; and multiferroic Bi0.89La0.05Tb0.06FeO3. This systematic study provides an instructive outline in the measurement of ferroelectric properties and the analysis and interpretation of experimental data.