{"title":"AN ALGORITHM FOR THE PROGENY SIZE DISTRIBUTIONS OF SUCCESSIVE BREAKAGE EVENTS IN BATCH BALL MILLS","authors":"Mahmut Camalan","doi":"10.3390/iecms2021-09381","DOIUrl":null,"url":null,"abstract":"The kinetic population balance model (PBM) is used to predict the particle size distributions of batch ball milling products. However, the rate parameters, as well as the solution of this model, may not be found in the non-first-order breakage region. This study alternatively represents a PBM-coupled simulation algorithm, which resembles a time-implicit or explicit matrix PBM for ball milling. The algorithm simply predicts the progeny size distributions after successive ball-particle impact events occurring in a batch ball mill. Therefore, the algorithm can accurately estimate the progeny size distributions either under the first-order or the non-first-order breakage region. For the purpose of this study, a few case studies were presented to demonstrate the accuracy of the algorithm.","PeriodicalId":118040,"journal":{"name":"Proceedings of The 2nd International Electronic Conference on Mineral Science","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 2nd International Electronic Conference on Mineral Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iecms2021-09381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The kinetic population balance model (PBM) is used to predict the particle size distributions of batch ball milling products. However, the rate parameters, as well as the solution of this model, may not be found in the non-first-order breakage region. This study alternatively represents a PBM-coupled simulation algorithm, which resembles a time-implicit or explicit matrix PBM for ball milling. The algorithm simply predicts the progeny size distributions after successive ball-particle impact events occurring in a batch ball mill. Therefore, the algorithm can accurately estimate the progeny size distributions either under the first-order or the non-first-order breakage region. For the purpose of this study, a few case studies were presented to demonstrate the accuracy of the algorithm.