Endogeneity and Instrumental Variables in Dynamic Models

J. Florens, G. Simon
{"title":"Endogeneity and Instrumental Variables in Dynamic Models","authors":"J. Florens, G. Simon","doi":"10.2139/ssrn.1633935","DOIUrl":null,"url":null,"abstract":"The objective of the paper is to draw the theory of endogeneity in dynamic models in discrete and continuous time, in particular for diffusions and counting processes. We first provide an extension of the separable set-up to a separable dynamic framework given in term of semi-martingale decomposition. Then we define our function of interest as a stopping time for an additional noise process, whose role is played by a Brownian motion for diffusions, and a Poisson process for counting processes.","PeriodicalId":219959,"journal":{"name":"ERN: Other Econometrics: Single Equation Models (Topic)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Single Equation Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1633935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The objective of the paper is to draw the theory of endogeneity in dynamic models in discrete and continuous time, in particular for diffusions and counting processes. We first provide an extension of the separable set-up to a separable dynamic framework given in term of semi-martingale decomposition. Then we define our function of interest as a stopping time for an additional noise process, whose role is played by a Brownian motion for diffusions, and a Poisson process for counting processes.
动态模型中的内生性和工具变量
本文的目的是在离散时间和连续时间的动态模型中,特别是扩散和计数过程中,提出内生性理论。首先,我们将可分结构推广到半鞅分解给出的可分动态框架。然后,我们将感兴趣的函数定义为附加噪声过程的停止时间,其作用由扩散的布朗运动和计数过程的泊松过程发挥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信