Penerapan Support Vector Regression (Svr) Dalam Memprediksi Jumlah Kunjungan Wisatawan Domestik Ke Bali

Ni Putu Nanik Hendayanti, I. Suniantara, M. Nurhidayati
{"title":"Penerapan Support Vector Regression (Svr) Dalam Memprediksi Jumlah Kunjungan Wisatawan Domestik Ke Bali","authors":"Ni Putu Nanik Hendayanti, I. Suniantara, M. Nurhidayati","doi":"10.30812/varian.v3i1.506","DOIUrl":null,"url":null,"abstract":"Bali is one of the most popular tourism sectors in Indonesia. In the arena of international tourism, the island of Bali is considered as the most famous national destination compared to other destinations. The high level of domestic tourism visits to Bali annually must be strictly noted especially for local governments and Bali provincial tourism agencies in optimizing facilities, infrastructure to the safety of tourists Visit. Therefore, it takes a method that can predict the number of tourists visiting Bali annually. One method used to predict the number of tourists visiting Bali is Support Vector Regression (SVR). SVR is a method to estimate a mapped function from an input object to a real amount based on the training data. SVR has the same properties about maximizing margins and kernel tricks for mapping nonlinear data. Results of this research. Based on forecasting using MAPE value training data obtained by 11.34% while use data testing of MAPE value obtained by 7.30%. Based on the resulting MAPE value can be categorized well for the number of tourism visitors.","PeriodicalId":188119,"journal":{"name":"Jurnal Varian","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Varian","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/varian.v3i1.506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Bali is one of the most popular tourism sectors in Indonesia. In the arena of international tourism, the island of Bali is considered as the most famous national destination compared to other destinations. The high level of domestic tourism visits to Bali annually must be strictly noted especially for local governments and Bali provincial tourism agencies in optimizing facilities, infrastructure to the safety of tourists Visit. Therefore, it takes a method that can predict the number of tourists visiting Bali annually. One method used to predict the number of tourists visiting Bali is Support Vector Regression (SVR). SVR is a method to estimate a mapped function from an input object to a real amount based on the training data. SVR has the same properties about maximizing margins and kernel tricks for mapping nonlinear data. Results of this research. Based on forecasting using MAPE value training data obtained by 11.34% while use data testing of MAPE value obtained by 7.30%. Based on the resulting MAPE value can be categorized well for the number of tourism visitors.
支持向量回归(Svr)的应用可以预测国内到巴厘岛的旅游次数
巴厘岛是印尼最受欢迎的旅游景点之一。在国际旅游的舞台上,与其他目的地相比,巴厘岛被认为是最著名的国家目的地。巴厘岛国内旅游的高水平,必须严格注意,特别是地方政府和巴厘岛省级旅游机构在优化设施,基础设施,以游客的安全访问。因此,需要一种可以预测巴厘岛每年游客数量的方法。用于预测巴厘岛游客数量的一种方法是支持向量回归(SVR)。SVR是一种基于训练数据估计从输入对象到实际量的映射函数的方法。对于映射非线性数据,SVR在最大化边界和核技巧方面具有相同的性质。本研究的结果。基于预测利用MAPE值训练得到的数据占11.34%,而利用数据检验得到的MAPE值占7.30%。根据所得的MAPE值可以很好地分类为旅游游客的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信