Effect of substrate surface free energy on the optoelectronic and morphological properties of organolead halide perovskite solar cell materials (Presentation Recording)

R. C. Shallcross, James G. Stanfill, N. Armstrong
{"title":"Effect of substrate surface free energy on the optoelectronic and morphological properties of organolead halide perovskite solar cell materials (Presentation Recording)","authors":"R. C. Shallcross, James G. Stanfill, N. Armstrong","doi":"10.1117/12.2188843","DOIUrl":null,"url":null,"abstract":"Here, we show how the surface free energy of the electron-collecting oxide contact has a very pronounced effect on the nucleation free energy of solution-processed organolead halide perovskite thin films, which influences the crystal size/orientation, band-edge energies, conductivity and, ultimately, the performance of solar cell devices. While a great deal of the research community’s attention has been focused on the perovskite deposition methodology (e.g., starting precursors, annealing conditions, etc.), we demonstrate how the surface free energy of the oxide contact itself can be modified to control morphology and optoelectronic properties of the resulting hybrid perovskite thin films. The surface free energy of high-quality oxide contacts deposited by chemical vapor deposition (CVD) and atomic layer deposition (ALD) is modified by functionalization with a variety of self-assembled monolayers. We explore a number of deposition methodologies (e.g., a variety of single step and sequential step approaches) and their effect on the morphological and electronic properties of the resulting perovskite thin films deposited on these modified oxide contacts. Standard atomic force microscopy (AFM) and its conductive analog (cAFM) show how the oxide surface free energy ultimately affects the nanoscale morphology and charge transport characteristics of these semiconductor films. Photoelectron spectroscopy is used to elucidate the chemical composition (e.g., X-ray photoelectron spectroscopy - XPS), band edge energies (e.g., ultraviolet photoelectron spectroscopy - UPS), and the presence of gap states above the valence band (high sensitivity UPS measurements near the Fermi energy) of the hybrid perovskite materials as a function of the oxide surface free energy.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2188843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Here, we show how the surface free energy of the electron-collecting oxide contact has a very pronounced effect on the nucleation free energy of solution-processed organolead halide perovskite thin films, which influences the crystal size/orientation, band-edge energies, conductivity and, ultimately, the performance of solar cell devices. While a great deal of the research community’s attention has been focused on the perovskite deposition methodology (e.g., starting precursors, annealing conditions, etc.), we demonstrate how the surface free energy of the oxide contact itself can be modified to control morphology and optoelectronic properties of the resulting hybrid perovskite thin films. The surface free energy of high-quality oxide contacts deposited by chemical vapor deposition (CVD) and atomic layer deposition (ALD) is modified by functionalization with a variety of self-assembled monolayers. We explore a number of deposition methodologies (e.g., a variety of single step and sequential step approaches) and their effect on the morphological and electronic properties of the resulting perovskite thin films deposited on these modified oxide contacts. Standard atomic force microscopy (AFM) and its conductive analog (cAFM) show how the oxide surface free energy ultimately affects the nanoscale morphology and charge transport characteristics of these semiconductor films. Photoelectron spectroscopy is used to elucidate the chemical composition (e.g., X-ray photoelectron spectroscopy - XPS), band edge energies (e.g., ultraviolet photoelectron spectroscopy - UPS), and the presence of gap states above the valence band (high sensitivity UPS measurements near the Fermi energy) of the hybrid perovskite materials as a function of the oxide surface free energy.
衬底表面自由能对有机卤化铅钙钛矿太阳能电池材料光电性能和形态性能的影响(演讲记录)
在这里,我们展示了收集电子的氧化物接触的表面自由能如何对溶液处理的有机卤化铅钙钛矿薄膜的成核自由能产生非常显著的影响,从而影响晶体尺寸/取向、带边能量、电导率,并最终影响太阳能电池器件的性能。虽然研究界的大量注意力都集中在钙钛矿沉积方法上(例如,起始前驱体,退火条件等),但我们展示了如何修改氧化物接触本身的表面自由能来控制所得到的杂化钙钛矿薄膜的形貌和光电性能。采用化学气相沉积(CVD)和原子层沉积(ALD)制备的高质量氧化触点的表面自由能被各种自组装的单层功能化修饰。我们探索了多种沉积方法(例如,各种单步和顺序步骤方法)以及它们对沉积在这些修饰氧化物触点上的钙钛矿薄膜的形态和电子特性的影响。标准原子力显微镜(AFM)及其导电模拟物(cAFM)显示了氧化物表面自由能最终如何影响这些半导体薄膜的纳米级形貌和电荷输运特性。光电子能谱用于阐明混合钙钛矿材料的化学成分(例如,x射线光电子能谱- XPS),能带边缘能量(例如,紫外光电子能谱- UPS),以及价带以上的间隙态(接近费米能的高灵敏度UPS测量)作为氧化物表面自由能的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信