SmartMiner: a depth first algorithm guided by tail information for mining maximal frequent itemsets

Q. Zou, W. Chu, Baojing Lu
{"title":"SmartMiner: a depth first algorithm guided by tail information for mining maximal frequent itemsets","authors":"Q. Zou, W. Chu, Baojing Lu","doi":"10.1109/ICDM.2002.1184003","DOIUrl":null,"url":null,"abstract":"Maximal frequent itemsets (MR) are crucial to many tasks in data mining. Since the MaxMiner algorithm first introduced enumeration trees for mining MR in 1998, several methods have been proposed to use depth first search to improve performance. To further improve the performance of mining MR, we proposed a technique that takes advantage of the information gathered from previous steps to discover new MR. More specifically, our algorithm called SmartMiner gathers and passes tail information and uses a heuristic select function which uses the tail information to select the next node to explore. Compared with Mafia and GenMax, SmartMiner generates a smaller search tree, requires a smaller number of support counting, and does not require superset checking. Using the datasets Mushroom and Connect, our experimental study reveals that SmartMiner generates the same MFI as Mafia and GenMax, but yields an order of magnitude improvement in speed.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Maximal frequent itemsets (MR) are crucial to many tasks in data mining. Since the MaxMiner algorithm first introduced enumeration trees for mining MR in 1998, several methods have been proposed to use depth first search to improve performance. To further improve the performance of mining MR, we proposed a technique that takes advantage of the information gathered from previous steps to discover new MR. More specifically, our algorithm called SmartMiner gathers and passes tail information and uses a heuristic select function which uses the tail information to select the next node to explore. Compared with Mafia and GenMax, SmartMiner generates a smaller search tree, requires a smaller number of support counting, and does not require superset checking. Using the datasets Mushroom and Connect, our experimental study reveals that SmartMiner generates the same MFI as Mafia and GenMax, but yields an order of magnitude improvement in speed.
SmartMiner:基于尾部信息的深度优先算法,用于挖掘最大频繁项集
最大频繁项集(MR)是数据挖掘中许多任务的关键。自从MaxMiner算法在1998年首次引入枚举树来挖掘MR以来,已经提出了几种使用深度优先搜索来提高性能的方法。为了进一步提高挖掘MR的性能,我们提出了一种技术,利用从前面步骤收集的信息来发现新的MR。更具体地说,我们的算法称为SmartMiner,它收集和传递尾部信息,并使用启发式选择函数,该函数使用尾部信息来选择下一个要探索的节点。与Mafia和GenMax相比,SmartMiner生成更小的搜索树,需要更少的支持计数,不需要超集检查。使用蘑菇和连接数据集,我们的实验研究表明,SmartMiner产生与Mafia和GenMax相同的MFI,但速度提高了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信