Research on Face Recognition Based on PCA

Hong Duan, Ruohe Yan, Kunhui Lin
{"title":"Research on Face Recognition Based on PCA","authors":"Hong Duan, Ruohe Yan, Kunhui Lin","doi":"10.1109/FITME.2008.115","DOIUrl":null,"url":null,"abstract":"Principal components analysis (PCA) is a basic method widely used in face feature extraction and recognition. In order to overcome the shortcoming of absent consideration of the between-class information and the defect of the inconvenient update of the eigen-space in the traditional PCA method, this paper proposed a cluster-based feature projection method. The method enlarges the difference of samples in the different classes, while the difference of the same classes is reduced. Experimental results on ORL face database show that the method has higher correct recognition rate and higher recognition speeds than traditional PCA algorithm.","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Principal components analysis (PCA) is a basic method widely used in face feature extraction and recognition. In order to overcome the shortcoming of absent consideration of the between-class information and the defect of the inconvenient update of the eigen-space in the traditional PCA method, this paper proposed a cluster-based feature projection method. The method enlarges the difference of samples in the different classes, while the difference of the same classes is reduced. Experimental results on ORL face database show that the method has higher correct recognition rate and higher recognition speeds than traditional PCA algorithm.
基于PCA的人脸识别研究
主成分分析(PCA)是一种广泛应用于人脸特征提取和识别的基本方法。为了克服传统主成分分析方法不考虑类间信息和特征空间更新不便的缺点,本文提出了一种基于聚类的特征投影方法。该方法扩大了不同类别样本间的差异,同时减小了同一类别样本间的差异。在ORL人脸数据库上的实验结果表明,该方法比传统的PCA算法具有更高的正确率和更快的识别速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信