Multi-camera track-before-detect

M. Taj, A. Cavallaro
{"title":"Multi-camera track-before-detect","authors":"M. Taj, A. Cavallaro","doi":"10.1109/ICDSC.2009.5289405","DOIUrl":null,"url":null,"abstract":"We present a novel multi-camera multi-target fusion and tracking algorithm for noisy data. Information fusion is an important step towards robust multi-camera tracking and allows us to reduce the effect of projection and parallax errors as well as of the sensor noise. Input data from each camera view are projected on a top-view through multi-level homographic transformations. These projected planes are then collapsed onto the top-view to generate a detection volume. To increase track consistency with the generated noisy data we propose to use a track-before-detect particle filter (TBD-PF) on a 5D state-space. TBD-PF is a Bayesian method which extends the target state with the signal intensity and evaluates each image segment against the motion model. This results in filtering components belonging to noise only and enables tracking without the need of hard thresholding the signal. We demonstrate and evaluate the proposed approach on real multi-camera data from a basketball match.","PeriodicalId":324810,"journal":{"name":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2009.5289405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

We present a novel multi-camera multi-target fusion and tracking algorithm for noisy data. Information fusion is an important step towards robust multi-camera tracking and allows us to reduce the effect of projection and parallax errors as well as of the sensor noise. Input data from each camera view are projected on a top-view through multi-level homographic transformations. These projected planes are then collapsed onto the top-view to generate a detection volume. To increase track consistency with the generated noisy data we propose to use a track-before-detect particle filter (TBD-PF) on a 5D state-space. TBD-PF is a Bayesian method which extends the target state with the signal intensity and evaluates each image segment against the motion model. This results in filtering components belonging to noise only and enables tracking without the need of hard thresholding the signal. We demonstrate and evaluate the proposed approach on real multi-camera data from a basketball match.
多幅相机track-before-detect
针对噪声数据,提出了一种新的多相机多目标融合与跟踪算法。信息融合是实现鲁棒多摄像机跟踪的重要一步,它使我们能够减少投影和视差误差以及传感器噪声的影响。每个摄像机视图的输入数据通过多级同形变换投影在顶视图上。然后将这些投影平面折叠到顶视图上以生成检测体。为了增加轨迹与产生的噪声数据的一致性,我们建议在5D状态空间上使用跟踪前检测粒子滤波器(TBD-PF)。TBD-PF是一种贝叶斯方法,它根据信号强度扩展目标状态,并根据运动模型对每个图像段进行评估。这导致滤波组件只属于噪声,并使跟踪不需要硬阈值的信号。我们在一场篮球赛的真实多摄像机数据上对该方法进行了验证和评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信