Tuning stationary iterative solvers for fault resilience

H. Anzt, J. Dongarra, E. S. Quintana‐Ortí
{"title":"Tuning stationary iterative solvers for fault resilience","authors":"H. Anzt, J. Dongarra, E. S. Quintana‐Ortí","doi":"10.1145/2832080.2832081","DOIUrl":null,"url":null,"abstract":"As the transistor's feature size decreases following Moore's Law, hardware will become more prone to permanent, intermittent, and transient errors, increasing the number of failures experienced by applications, and diminishing the confidence of users. As a result, resilience is considered the most difficult under addressed issue faced by the High Performance Computing community.\n In this paper, we address the design of error resilient iterative solvers for sparse linear systems. Contrary to most previous approaches, based on Krylov subspace methods, for this purpose we analyze stationary component-wise relaxation. Concretely, starting from a plain implementation of the Jacobi iteration, we design a low-cost component-wise technique that elegantly handles bit-flips, turning the initial synchronized solver into an asynchronous iteration. Our experimental study employs sparse incomplete factorizations from several practical applications to expose the convergence delay incurred by the fault-tolerant implementation.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832080.2832081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

As the transistor's feature size decreases following Moore's Law, hardware will become more prone to permanent, intermittent, and transient errors, increasing the number of failures experienced by applications, and diminishing the confidence of users. As a result, resilience is considered the most difficult under addressed issue faced by the High Performance Computing community. In this paper, we address the design of error resilient iterative solvers for sparse linear systems. Contrary to most previous approaches, based on Krylov subspace methods, for this purpose we analyze stationary component-wise relaxation. Concretely, starting from a plain implementation of the Jacobi iteration, we design a low-cost component-wise technique that elegantly handles bit-flips, turning the initial synchronized solver into an asynchronous iteration. Our experimental study employs sparse incomplete factorizations from several practical applications to expose the convergence delay incurred by the fault-tolerant implementation.
修正故障恢复的平稳迭代解算器
随着晶体管的特征尺寸按照摩尔定律减小,硬件将变得更容易出现永久性、间歇性和瞬态错误,从而增加应用程序经历的故障数量,并降低用户的信心。因此,弹性被认为是高性能计算社区面临的最难解决的问题。本文研究了稀疏线性系统的误差弹性迭代解的设计。与大多数以前的方法相反,基于Krylov子空间方法,为此我们分析了平稳分量的弛豫。具体地说,从Jacobi迭代的简单实现开始,我们设计了一种低成本的组件技术,该技术可以优雅地处理位翻转,将初始同步求解器转换为异步迭代。我们的实验研究采用来自几个实际应用的稀疏不完全分解来揭示容错实现所带来的收敛延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信