A Framework for Scalable Biophysics-based Image Analysis

A. Gholami, A. Mang, Klaudius Scheufele, C. Davatzikos, M. Mehl, G. Biros
{"title":"A Framework for Scalable Biophysics-based Image Analysis","authors":"A. Gholami, A. Mang, Klaudius Scheufele, C. Davatzikos, M. Mehl, G. Biros","doi":"10.1145/3126908.3126930","DOIUrl":null,"url":null,"abstract":"We present SIBIA (Scalable Integrated Biophysics-based Image Analysis), a framework for coupling biophysical models with medical image analysis. It provides solvers for an image-driven inverse brain tumor growth model and an image registration problem, the combination of which can eventually help in diagnosis and prognosis of brain tumors. The two main computational kernels of SIBIA are a Fast Fourier Transformation (FFT) implemented in the library AccFFT to discretize differential operators, and a cubic interpolation kernel for semi-Lagrangian based advection. We present efficiency and scalability results for the computational kernels, the inverse tumor solver and image registration on two x86 systems, Lonestar 5 at the Texas Advanced Computing Center and Hazel Hen at the Stuttgart High Performance Computing Center. We showcase results that demonstrate that our solver can be used to solve registration problems of unprecedented scale, 40963 resulting in ~ 200 billion unknowns-a problem size that is 64× larger than the state-of-the-art. For problem sizes of clinical interest, SIBIA is about 8× faster than the state-of-the-art. CCS CONCEPTS • Computing methodologies $\\rightarrow$ Image segmentation; • Mathematics of computing $\\rightarrow$ Bio-inspired optimization;","PeriodicalId":204241,"journal":{"name":"SC17: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC17: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126908.3126930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We present SIBIA (Scalable Integrated Biophysics-based Image Analysis), a framework for coupling biophysical models with medical image analysis. It provides solvers for an image-driven inverse brain tumor growth model and an image registration problem, the combination of which can eventually help in diagnosis and prognosis of brain tumors. The two main computational kernels of SIBIA are a Fast Fourier Transformation (FFT) implemented in the library AccFFT to discretize differential operators, and a cubic interpolation kernel for semi-Lagrangian based advection. We present efficiency and scalability results for the computational kernels, the inverse tumor solver and image registration on two x86 systems, Lonestar 5 at the Texas Advanced Computing Center and Hazel Hen at the Stuttgart High Performance Computing Center. We showcase results that demonstrate that our solver can be used to solve registration problems of unprecedented scale, 40963 resulting in ~ 200 billion unknowns-a problem size that is 64× larger than the state-of-the-art. For problem sizes of clinical interest, SIBIA is about 8× faster than the state-of-the-art. CCS CONCEPTS • Computing methodologies $\rightarrow$ Image segmentation; • Mathematics of computing $\rightarrow$ Bio-inspired optimization;
基于可扩展生物物理的图像分析框架
我们提出了SIBIA(可扩展集成生物物理图像分析),这是一个将生物物理模型与医学图像分析相结合的框架。它为图像驱动的脑肿瘤逆生长模型和图像配准问题提供了求解方法,最终有助于脑肿瘤的诊断和预后。SIBIA的两个主要计算核是在AccFFT库中实现的用于离散微分算子的快速傅里叶变换(FFT)和基于半拉格朗日的平流的三次插值核。我们在德克萨斯高级计算中心的Lonestar 5和斯图加特高性能计算中心的Hazel Hen这两个x86系统上展示了计算内核、逆肿瘤求解器和图像配准的效率和可扩展性结果。我们展示的结果表明,我们的求解器可以用于解决规模空前的注册问题,产生约2000亿个未知数——这个问题的规模比最先进的问题大64倍。对于临床感兴趣的问题规模,SIBIA比最先进的技术快8倍左右。•计算方法$\右箭头$图像分割;•计算数学$\right - row$仿生优化;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信