Recognizing Proper Tree-Graphs

S. Chaplick, P. Golovach, Tim A. Hartmann, D. Knop
{"title":"Recognizing Proper Tree-Graphs","authors":"S. Chaplick, P. Golovach, Tim A. Hartmann, D. Knop","doi":"10.4230/LIPIcs.IPEC.2020.8","DOIUrl":null,"url":null,"abstract":"We investigate the parameterized complexity of the recognition problem for the proper $H$-graphs. The $H$-graphs are the intersection graphs of connected subgraphs of a subdivision of a multigraph $H$, and the properness means that the containment relationship between the representations of the vertices is forbidden. The class of $H$-graphs was introduced as a natural (parameterized) generalization of interval and circular-arc graphs by Bir\\'o, Hujter, and Tuza in 1992, and the proper $H$-graphs were introduced by Chaplick et al. in WADS 2019 as a generalization of proper interval and circular-arc graphs. For these graph classes, $H$ may be seen as a structural parameter reflecting the distance of a graph to a (proper) interval graph, and as such gained attention as a structural parameter in the design of efficient algorithms. We show the following results. - For a tree $T$ with $t$ nodes, it can be decided in $ 2^{\\mathcal{O}(t^2 \\log t)} \\cdot n^3 $ time, whether an $n$-vertex graph $ G $ is a proper $ T $-graph. For yes-instances, our algorithm outputs a proper $T$-representation. This proves that the recognition problem for proper $H$-graphs, where $H$ required to be a tree, is fixed-parameter tractable when parameterized by the size of $T$. Previously only NP-completeness was known. - Contrasting to the first result, we prove that if $H$ is not constrained to be a tree, then the recognition problem becomes much harder. Namely, we show that there is a multigraph $H$ with 4 vertices and 5 edges such that it is NP-complete to decide whether $G$ is a proper $H$-graph.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2020.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We investigate the parameterized complexity of the recognition problem for the proper $H$-graphs. The $H$-graphs are the intersection graphs of connected subgraphs of a subdivision of a multigraph $H$, and the properness means that the containment relationship between the representations of the vertices is forbidden. The class of $H$-graphs was introduced as a natural (parameterized) generalization of interval and circular-arc graphs by Bir\'o, Hujter, and Tuza in 1992, and the proper $H$-graphs were introduced by Chaplick et al. in WADS 2019 as a generalization of proper interval and circular-arc graphs. For these graph classes, $H$ may be seen as a structural parameter reflecting the distance of a graph to a (proper) interval graph, and as such gained attention as a structural parameter in the design of efficient algorithms. We show the following results. - For a tree $T$ with $t$ nodes, it can be decided in $ 2^{\mathcal{O}(t^2 \log t)} \cdot n^3 $ time, whether an $n$-vertex graph $ G $ is a proper $ T $-graph. For yes-instances, our algorithm outputs a proper $T$-representation. This proves that the recognition problem for proper $H$-graphs, where $H$ required to be a tree, is fixed-parameter tractable when parameterized by the size of $T$. Previously only NP-completeness was known. - Contrasting to the first result, we prove that if $H$ is not constrained to be a tree, then the recognition problem becomes much harder. Namely, we show that there is a multigraph $H$ with 4 vertices and 5 edges such that it is NP-complete to decide whether $G$ is a proper $H$-graph.
正确树形图的识别
我们研究了适当的$H$-图识别问题的参数化复杂度。$H$-图是多图$H$的一个细分的连通子图的交图,其性质意味着顶点表示之间的包容关系是被禁止的。1992年Bir\ o、Hujter和Tuza将$H$-图作为区间图和圆弧图的自然(参数化)泛化引入,Chaplick等人在WADS 2019中将$H$-图作为区间图和圆弧图的泛化引入。对于这些图类,$H$可以看作是反映图到(适当)区间图的距离的结构参数,因此在高效算法的设计中作为结构参数受到关注。我们显示了以下结果。-对于有$T$节点的树$T$,可以在$ 2^{\mathcal{O}(T ^2 \log T)} \cdot n^3 $时间内决定$n$顶点图$ G $是否是一个适当的$T$图。对于yes实例,我们的算法输出一个适当的$T$表示。这证明了当用$T$的大小参数化时,对于适当的$H$-图(其中$H$需要是树)的识别问题是固定参数可处理的。以前只知道np完备性。-与第一个结果相比,我们证明如果$H$不被约束为树,那么识别问题变得更加困难。也就是说,我们证明了存在一个有4个顶点和5条边的多图$H$,使得决定$G$是否是一个适当的$H$-图是np完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信