Application of adaptive neuro-fuzzy inference system and chicken swarm optimization for classifying river water quality

E. Sutoyo, Rd. Rohmat Saedudin, I. R. Yanto, A. Apriani
{"title":"Application of adaptive neuro-fuzzy inference system and chicken swarm optimization for classifying river water quality","authors":"E. Sutoyo, Rd. Rohmat Saedudin, I. R. Yanto, A. Apriani","doi":"10.1109/ICEEIE.2017.8328774","DOIUrl":null,"url":null,"abstract":"Along with the rapid technological developments led to more effective and efficient processing machinery in producing goods and services but the bad news of the sector is the waste and pollution it produces. Pollutants from settlements and industries can cause water quality degradation, causing distress and disturbance to the ecosystem. Water quality evaluation has a critical role in environmental management and decision-making, gives a scientific principle to protect water resources. Therefore, this study explores ANFIS-CSO for classification of water river basin. This study demonstrated that ANFIS-CSO technique is effective for water river classification. On the basis of analysis, the results verify that the ANFIS-CSO achieved high accuracy for solving problems of water river quality classification.","PeriodicalId":304532,"journal":{"name":"2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEIE.2017.8328774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Along with the rapid technological developments led to more effective and efficient processing machinery in producing goods and services but the bad news of the sector is the waste and pollution it produces. Pollutants from settlements and industries can cause water quality degradation, causing distress and disturbance to the ecosystem. Water quality evaluation has a critical role in environmental management and decision-making, gives a scientific principle to protect water resources. Therefore, this study explores ANFIS-CSO for classification of water river basin. This study demonstrated that ANFIS-CSO technique is effective for water river classification. On the basis of analysis, the results verify that the ANFIS-CSO achieved high accuracy for solving problems of water river quality classification.
自适应神经模糊推理系统与鸡群优化在河流水质分类中的应用
随着技术的快速发展,在生产商品和服务时产生了更有效和高效的加工机械,但该部门的坏消息是它产生的废物和污染。来自住区和工业的污染物会导致水质退化,对生态系统造成困扰和干扰。水质评价在环境管理和决策中起着至关重要的作用,为保护水资源提供了科学的依据。因此,本研究探索了anfiss - cso在水系流域分类中的应用。研究表明,anfiss - cso技术对水体分类是有效的。在分析的基础上,验证了anfiss - cso在解决水质分类问题上取得了较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信