Sparsity-based space-time adaptive processing using OFDM radar

S. Sen
{"title":"Sparsity-based space-time adaptive processing using OFDM radar","authors":"S. Sen","doi":"10.1109/WDD.2012.7311257","DOIUrl":null,"url":null,"abstract":"We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain, and hence we exploit that sparsity to develop an efficient STAP technique. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. To estimate the target and interference covariance matrices, we apply a residual sparse-recovery technique that enables us to incorporate the partially known support of the sparse vector. Our numerical results demonstrate that the sparsity-based STAP algorithm, with considerably lesser number of secondary data, produces an equivalent performance as the other existing STAP techniques.","PeriodicalId":102625,"journal":{"name":"2012 International Waveform Diversity & Design Conference (WDD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Waveform Diversity & Design Conference (WDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WDD.2012.7311257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain, and hence we exploit that sparsity to develop an efficient STAP technique. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. To estimate the target and interference covariance matrices, we apply a residual sparse-recovery technique that enables us to incorporate the partially known support of the sparse vector. Our numerical results demonstrate that the sparsity-based STAP algorithm, with considerably lesser number of secondary data, produces an equivalent performance as the other existing STAP techniques.
基于稀疏性的OFDM雷达空时自适应处理
提出了一种基于稀疏性的空时自适应处理(STAP)算法,利用正交频分复用(OFDM)雷达检测慢动目标。我们观察到目标和干扰光谱在时空域中具有固有的稀疏性,因此我们利用这种稀疏性开发了一种高效的STAP技术。此外,OFDM信号的使用增加了系统的频率分集,因为目标的不同散射中心在不同的频率上共振,从而提高了目标的可探测性。首先,我们建立了一个考虑杂波和干扰作为干扰源的OFDM雷达的实际稀疏测量模型。然后,我们证明了最优stap滤波器权向量等于干扰和目标协方差矩阵的最小广义特征值所对应的广义特征向量。为了估计目标和干涉协方差矩阵,我们应用残差稀疏恢复技术,使我们能够结合稀疏向量的部分已知支持。我们的数值结果表明,基于稀疏性的STAP算法在次要数据数量相当少的情况下,可以产生与其他现有STAP技术相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信