The SIGMORPHON 2020 Shared Task on Multilingual Grapheme-to-Phoneme Conversion

Kyle Gorman, Lucas F. E. Ashby, Aaron Goyzueta, Arya D. McCarthy, Shijie Wu, Daniel You
{"title":"The SIGMORPHON 2020 Shared Task on Multilingual Grapheme-to-Phoneme Conversion","authors":"Kyle Gorman, Lucas F. E. Ashby, Aaron Goyzueta, Arya D. McCarthy, Shijie Wu, Daniel You","doi":"10.18653/v1/2020.sigmorphon-1.2","DOIUrl":null,"url":null,"abstract":"We describe the design and findings of the SIGMORPHON 2020 shared task on multilingual grapheme-to-phoneme conversion. Participants were asked to submit systems which take in a sequence of graphemes in a given language as input, then output a sequence of phonemes representing the pronunciation of that grapheme sequence. Nine teams submitted a total of 23 systems, at best achieving a 18% relative reduction in word error rate (macro-averaged over languages), versus strong neural sequence-to-sequence baselines. To facilitate error analysis, we publicly release the complete outputs for all systems—a first for the SIGMORPHON workshop.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.sigmorphon-1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We describe the design and findings of the SIGMORPHON 2020 shared task on multilingual grapheme-to-phoneme conversion. Participants were asked to submit systems which take in a sequence of graphemes in a given language as input, then output a sequence of phonemes representing the pronunciation of that grapheme sequence. Nine teams submitted a total of 23 systems, at best achieving a 18% relative reduction in word error rate (macro-averaged over languages), versus strong neural sequence-to-sequence baselines. To facilitate error analysis, we publicly release the complete outputs for all systems—a first for the SIGMORPHON workshop.
多语言字素到音素转换的SIGMORPHON 2020共享任务
我们描述了SIGMORPHON 2020关于多语言字素到音素转换的共享任务的设计和发现。参与者被要求提交一种系统,该系统将给定语言中的一系列字素作为输入,然后输出一系列代表该字素序列发音的音素。9个团队总共提交了23个系统,与强大的神经序列到序列基线相比,单词错误率最多减少18%(语言宏观平均)。为了便于错误分析,我们公开发布了所有系统的完整输出——这在SIGMORPHON研讨会上还是第一次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信