{"title":"Co-clustering for Binary and Categorical Data with Maximum Modularity","authors":"Lazhar Labiod, M. Nadif","doi":"10.1109/ICDM.2011.37","DOIUrl":null,"url":null,"abstract":"To tackle the co-clustering problem for binary and categorical data, we propose a generalized modularity measure and a spectral approximation of the modularity matrix. A spectral algorithm maximizing the modularity measure is then presented. Experimental results are performed on a variety of simulated and real-world data sets confirming the interest of the use of the modularity in co-clustering and assessing the number of clusters contexts.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
To tackle the co-clustering problem for binary and categorical data, we propose a generalized modularity measure and a spectral approximation of the modularity matrix. A spectral algorithm maximizing the modularity measure is then presented. Experimental results are performed on a variety of simulated and real-world data sets confirming the interest of the use of the modularity in co-clustering and assessing the number of clusters contexts.