{"title":"StatCache: a probabilistic approach to efficient and accurate data locality analysis","authors":"Erik Berg, Erik Hagersten","doi":"10.1109/ISPASS.2004.1291352","DOIUrl":null,"url":null,"abstract":"The widening memory gap reduces performance of applications with poor data locality. Therefore, there is a need for methods to analyze data locality and help application optimization. In this paper we present StatCache, a novel sampling-based method for performing data-locality analysis on realistic workloads. StatCache is based on a probabilistic model of the cache, rather than a functional cache simulator. It uses statistics from a single run to accurately estimate miss ratios of fully-associative caches of arbitrary sizes and generate working-set graphs. We evaluate StatCache using the SPEC CPU2000 benchmarks and show that StatCache gives accurate results with a sampling rate as low as 10/sup -4/. We also provide a proof-of-concept implementation, and discuss potentially very fast implementation alternatives.","PeriodicalId":188291,"journal":{"name":"IEEE International Symposium on - ISPASS Performance Analysis of Systems and Software, 2004","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"193","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on - ISPASS Performance Analysis of Systems and Software, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2004.1291352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 193
Abstract
The widening memory gap reduces performance of applications with poor data locality. Therefore, there is a need for methods to analyze data locality and help application optimization. In this paper we present StatCache, a novel sampling-based method for performing data-locality analysis on realistic workloads. StatCache is based on a probabilistic model of the cache, rather than a functional cache simulator. It uses statistics from a single run to accurately estimate miss ratios of fully-associative caches of arbitrary sizes and generate working-set graphs. We evaluate StatCache using the SPEC CPU2000 benchmarks and show that StatCache gives accurate results with a sampling rate as low as 10/sup -4/. We also provide a proof-of-concept implementation, and discuss potentially very fast implementation alternatives.