Analysis of legendre polynomial kernel in support vector machines

Naima Djelloul, A. Amir
{"title":"Analysis of legendre polynomial kernel in support vector machines","authors":"Naima Djelloul, A. Amir","doi":"10.1504/ijcsm.2019.10025670","DOIUrl":null,"url":null,"abstract":"For several types of machines learning problems, the support vector machine is a method of choice. The kernel functions are a basic ingredient in support vector machine theory. Kernels based on the concepts of orthogonal polynomials gave the great satisfaction in practice. In this paper we identify the reproducing kernel Hilbert space of legendre polynomial kernel which allows us to understand its ability to extract more discriminative features. We also show that without being a universal kernel, legendre kernel possesses the same separation properties. The legendre, Gaussian and polynomial kernel performance has been first evaluated on two dimensional illustrative examples in order to give a graphical comparison, then on real world data sets from UCI repository. For nonlinearly separable data, legendre kernel always gives satisfaction regarding classification accuracy and reduction in the number of support vectors.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2019.10025670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

For several types of machines learning problems, the support vector machine is a method of choice. The kernel functions are a basic ingredient in support vector machine theory. Kernels based on the concepts of orthogonal polynomials gave the great satisfaction in practice. In this paper we identify the reproducing kernel Hilbert space of legendre polynomial kernel which allows us to understand its ability to extract more discriminative features. We also show that without being a universal kernel, legendre kernel possesses the same separation properties. The legendre, Gaussian and polynomial kernel performance has been first evaluated on two dimensional illustrative examples in order to give a graphical comparison, then on real world data sets from UCI repository. For nonlinearly separable data, legendre kernel always gives satisfaction regarding classification accuracy and reduction in the number of support vectors.
支持向量机中legendre多项式核的分析
对于几种类型的机器学习问题,支持向量机是一种选择方法。核函数是支持向量机理论的一个基本组成部分。基于正交多项式概念的核函数在实践中得到了极大的满足。本文对勒让德多项式核的再现核希尔伯特空间进行了识别,从而了解了其提取更多判别特征的能力。我们还证明了即使不是全称核,legendre核也具有相同的分离性质。为了进行图形比较,我们首先在二维示例上评估了legendre、高斯和多项式核的性能,然后在UCI存储库的真实数据集上进行了评估。对于非线性可分数据,legendre核在分类精度和减少支持向量数量方面总是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信