{"title":"An Intelligent Approach to Detect Fake News Using Artificial Intelligence Technique","authors":"Sumit Das, M. Sanyal, Sarbajyoti Mallik","doi":"10.4018/ijdai.2021070101","DOIUrl":null,"url":null,"abstract":"There is a lot of fake news roaming around various mediums, which misleads people. It is a big issue in this advanced intelligent era, and there is a need to find some solution to this kind of situation. This article proposes an approach that analyzes fake and real news. This analysis is focused on sentiment, significance, and novelty, which are a few characteristics of this news. The ability to manipulate daily information mathematically and statistically is allowed by expressing news reports as numbers and metadata. The objective of this article is to analyze and filter out the fake news that makes trouble. The proposed model is amalgamated with the web application; users can get real data and fake data by using this application. The authors have used the AI (artificial intelligence) algorithms, specifically logistic regression and LSTM (long short-term memory), so that the application works well. The results of the proposed model are compared with existing models.","PeriodicalId":176325,"journal":{"name":"International Journal of Distributed Artificial Intelligence","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdai.2021070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
There is a lot of fake news roaming around various mediums, which misleads people. It is a big issue in this advanced intelligent era, and there is a need to find some solution to this kind of situation. This article proposes an approach that analyzes fake and real news. This analysis is focused on sentiment, significance, and novelty, which are a few characteristics of this news. The ability to manipulate daily information mathematically and statistically is allowed by expressing news reports as numbers and metadata. The objective of this article is to analyze and filter out the fake news that makes trouble. The proposed model is amalgamated with the web application; users can get real data and fake data by using this application. The authors have used the AI (artificial intelligence) algorithms, specifically logistic regression and LSTM (long short-term memory), so that the application works well. The results of the proposed model are compared with existing models.