{"title":"Practical stability of perturbed event-driven controlled linear systems","authors":"W. Heemels, J.H. Sanded","doi":"10.1109/ACC.2006.1657408","DOIUrl":null,"url":null,"abstract":"Many plants are regulated by digital controllers that run at a constant sampling frequency, thereby requiring a high processor load for the computations. To guarantee a good control performance, such a high sampling frequency might be required at some periods of time, but not necessarily continuously. By using an event-driven control scheme that triggers the update of the control value only when the (tracking or stabilization) error is large, the average processor load can be reduced considerably. Although event-driven control can be effective from a CPU-load perspective, the analysis of such control schemes is much more involved than that of conventional schemes and is a widely open research area. This paper investigates the control performance of an event-driven controlled continuous-time linear system with additive disturbances in terms of practical stability (ultimate boundedness). By using the derived results, the event-driven controller can be tuned to get satisfactorily transient behavior and desirable ultimate bounds, while reducing the required average processor load for its implementation. Several examples illustrate the theory","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1657408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Many plants are regulated by digital controllers that run at a constant sampling frequency, thereby requiring a high processor load for the computations. To guarantee a good control performance, such a high sampling frequency might be required at some periods of time, but not necessarily continuously. By using an event-driven control scheme that triggers the update of the control value only when the (tracking or stabilization) error is large, the average processor load can be reduced considerably. Although event-driven control can be effective from a CPU-load perspective, the analysis of such control schemes is much more involved than that of conventional schemes and is a widely open research area. This paper investigates the control performance of an event-driven controlled continuous-time linear system with additive disturbances in terms of practical stability (ultimate boundedness). By using the derived results, the event-driven controller can be tuned to get satisfactorily transient behavior and desirable ultimate bounds, while reducing the required average processor load for its implementation. Several examples illustrate the theory