Study On Some Matrix Equations Involving The Weighted Geometric Mean and Their Application

Xuân Đại Lê, Tuan Pham, Thi Hong Linh Nguyen, N. Tran, V. Dang
{"title":"Study On Some Matrix Equations Involving The Weighted Geometric Mean and Their Application","authors":"Xuân Đại Lê, Tuan Pham, Thi Hong Linh Nguyen, N. Tran, V. Dang","doi":"10.29007/7sj7","DOIUrl":null,"url":null,"abstract":"In this paper we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. A fidelity measure for quantum states based on the matrix geometric mean is introduced as an application of matrix equation.","PeriodicalId":149532,"journal":{"name":"Kalpa Publications in Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kalpa Publications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/7sj7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. A fidelity measure for quantum states based on the matrix geometric mean is introduced as an application of matrix equation.
涉及加权几何平均的若干矩阵方程及其应用研究
本文考虑了两个涉及加权几何平均的矩阵方程。利用正定矩阵锥上的不动点定理证明了正定解的唯一存在性。此外,我们还研究了这些方程的多步平稳迭代方法,并证明了相应的收敛性。作为矩阵方程的一种应用,介绍了基于矩阵几何均值的量子态保真度度量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信