Model Klasifikasi Pada Seleksi Mahasiswa Baru Penerima KIP Kuliah Menggunakan Regresi Logistik Biner

Ronny Susetyoko, Wiratmoko Yuwono, Elly Purwantini
{"title":"Model Klasifikasi Pada Seleksi Mahasiswa Baru Penerima KIP Kuliah Menggunakan Regresi Logistik Biner","authors":"Ronny Susetyoko, Wiratmoko Yuwono, Elly Purwantini","doi":"10.33795/jip.v8i4.914","DOIUrl":null,"url":null,"abstract":"Seleksi mahasiswa baru penerima Kartu Indonesia Pintar Kuliah (KIP Kuliah) dilakukan oleh setiap institusi untuk memilih mahasiswa yang benar-benar memiliki potensi akademik yang baik dan keterbatasan ekonomi. Pada penelitian ini menggunakan regresi logistik biner sebagai model klasifikasi. Data hasil preprocessing dibagi menjadi data training dan data testing. Beberapa model regresi logistik dibandingkan kinerjanya, baik yang menggunakan data asli, data hasil normalisasi, data undersampling, data oversampling, serta data hasil kombinasi oversampling dan undersampling. Evaluasi model berdasarkan signifikansi parameter di dalam model dan kinerja klasifikasi dari matriks konfusi. Dari perbandingkan tujuh model regresi logistik, model yang terbaik adalah model yang menggunakan data asli dengan rerata F1 Score 92,40%, rerata recall sebesar 87,93%, accuracy sebesar 88,01%, precision sebesar 97,92%, dan AUC sebesar 84,6%.","PeriodicalId":232501,"journal":{"name":"Jurnal Informatika Polinema","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Polinema","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33795/jip.v8i4.914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Seleksi mahasiswa baru penerima Kartu Indonesia Pintar Kuliah (KIP Kuliah) dilakukan oleh setiap institusi untuk memilih mahasiswa yang benar-benar memiliki potensi akademik yang baik dan keterbatasan ekonomi. Pada penelitian ini menggunakan regresi logistik biner sebagai model klasifikasi. Data hasil preprocessing dibagi menjadi data training dan data testing. Beberapa model regresi logistik dibandingkan kinerjanya, baik yang menggunakan data asli, data hasil normalisasi, data undersampling, data oversampling, serta data hasil kombinasi oversampling dan undersampling. Evaluasi model berdasarkan signifikansi parameter di dalam model dan kinerja klasifikasi dari matriks konfusi. Dari perbandingkan tujuh model regresi logistik, model yang terbaik adalah model yang menggunakan data asli dengan rerata F1 Score 92,40%, rerata recall sebesar 87,93%, accuracy sebesar 88,01%, precision sebesar 97,92%, dan AUC sebesar 84,6%.
新生KIP college选择的分类模型使用二元物流回归
印度尼西亚智能大学(KIP college)的新学生选择是由每个机构选择那些真正有良好学业潜力和经济限制的学生进行的。在本研究中,使用二进制物流回归作为分类模型。预处理结果数据分为数据培训和数据测试。一些物流回归模型,包括使用原始数据、正常化结果数据、降解数据、再取样数据以及再降解数据。基于一致性矩阵的模型和分类执行的参数的重要性对模型进行评估。在7种物流回归模型中,最好的模型是使用原始数据与F1分数92.40%,回溯是87.93%,准确为88.01%,准确为97.92%,AUC为84.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信