Wenbin Wang, Chaoshu Yang, Runyu Zhang, Shun Nie, Xianzhang Chen, Duo Liu
{"title":"Themis: Malicious Wear Detection and Defense for Persistent Memory File Systems","authors":"Wenbin Wang, Chaoshu Yang, Runyu Zhang, Shun Nie, Xianzhang Chen, Duo Liu","doi":"10.1109/ICPADS51040.2020.00028","DOIUrl":null,"url":null,"abstract":"The persistent memory file systems can significantly improve the performance by utilizing the advanced features of emerging Persistent Memories (PMs). Unfortunately, the PMs have the problem of limited write endurance. However, the design of persistent memory file systems usually ignores this problem. Accordingly, the write-intensive applications, especially for the malicious wear attack virus, can damage underlying PMs quickly by calling the common interfaces of persistent memory file systems to write a few cells of PM continuously. Which seriously threat to the data reliability of file systems. However, existing solutions to solve this problem based on persistent memory file systems are not systematic and ignore the unlimited write endurance of DRAM. In this paper, we propose a malicious wear detection and defense mechanism for persistent memory file systems, called Themis, to solve this problem. The proposed Themis identifies the malicious wear attack according to the write traffic and the set lifespan of PM. Then, we design a wear-leveling scheme and migrate the writes of malicious wear attackers into DRAM to improve the lifespan of PMs. We implement the proposed Themis in Linux kernel based on NOVA, a state-of-the-art persistent memory file system. Compared with DWARM, the state-of-the-art and wear-aware memory management technique, experimental results show that Themis can improve 5774× lifetime of PM and 1.13× performance, respectively.","PeriodicalId":196548,"journal":{"name":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS51040.2020.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The persistent memory file systems can significantly improve the performance by utilizing the advanced features of emerging Persistent Memories (PMs). Unfortunately, the PMs have the problem of limited write endurance. However, the design of persistent memory file systems usually ignores this problem. Accordingly, the write-intensive applications, especially for the malicious wear attack virus, can damage underlying PMs quickly by calling the common interfaces of persistent memory file systems to write a few cells of PM continuously. Which seriously threat to the data reliability of file systems. However, existing solutions to solve this problem based on persistent memory file systems are not systematic and ignore the unlimited write endurance of DRAM. In this paper, we propose a malicious wear detection and defense mechanism for persistent memory file systems, called Themis, to solve this problem. The proposed Themis identifies the malicious wear attack according to the write traffic and the set lifespan of PM. Then, we design a wear-leveling scheme and migrate the writes of malicious wear attackers into DRAM to improve the lifespan of PMs. We implement the proposed Themis in Linux kernel based on NOVA, a state-of-the-art persistent memory file system. Compared with DWARM, the state-of-the-art and wear-aware memory management technique, experimental results show that Themis can improve 5774× lifetime of PM and 1.13× performance, respectively.