Extracting Semantics of Indoor Places based on Context Recognition

G. Pipelidis, Frederik Fraaz, C. Prehofer
{"title":"Extracting Semantics of Indoor Places based on Context Recognition","authors":"G. Pipelidis, Frederik Fraaz, C. Prehofer","doi":"10.1109/PERCOMW.2018.8480187","DOIUrl":null,"url":null,"abstract":"In this paper we present our work in progress for the dynamic extraction of semantics in a subway station, from smart-phone Inertial Motion Unit (IMU) data. For this, we use machine learning for context recognition and fuzzy set theory for quantification of the uncertainty. Our architecture is client-server, where the clients collect data from sensors, extract features and use classification to identify seven different activities, while these activities are then aggregated on the server with other user activities, from the same regions, to enable the semantic identification of places.","PeriodicalId":190096,"journal":{"name":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2018.8480187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present our work in progress for the dynamic extraction of semantics in a subway station, from smart-phone Inertial Motion Unit (IMU) data. For this, we use machine learning for context recognition and fuzzy set theory for quantification of the uncertainty. Our architecture is client-server, where the clients collect data from sensors, extract features and use classification to identify seven different activities, while these activities are then aggregated on the server with other user activities, from the same regions, to enable the semantic identification of places.
基于上下文识别的室内场所语义提取
在本文中,我们介绍了我们正在进行的从智能手机惯性运动单元(IMU)数据动态提取地铁站语义的工作。为此,我们使用机器学习进行上下文识别,并使用模糊集理论对不确定性进行量化。我们的架构是客户机-服务器,其中客户机从传感器收集数据,提取特征并使用分类来识别七种不同的活动,而这些活动随后与来自同一地区的其他用户活动一起在服务器上聚合,以实现位置的语义识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信