Anytime scheduling for real-time embedded control applications

J. Shackleton, D. Cofer, S. Cooper
{"title":"Anytime scheduling for real-time embedded control applications","authors":"J. Shackleton, D. Cofer, S. Cooper","doi":"10.1109/DASC.2004.1390804","DOIUrl":null,"url":null,"abstract":"Current real-time scheduling methods focus on periodic tasks with fixed (or at least bounded) execution times. However, many tasks used in control and optimization applications do not fit this pattern. \"Anytime\" or incremental algorithms whose performance is variable and improves as their execution time increases are examples of such tasks. We have developed an adaptive scheduling framework to deal with multiple anytime tasks that compete with each other for processing time. This work explores the issues surrounding anytime tasks, how they are scheduled, how they adapt, and how they interact with more traditional scheduling techniques.","PeriodicalId":422463,"journal":{"name":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2004.1390804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Current real-time scheduling methods focus on periodic tasks with fixed (or at least bounded) execution times. However, many tasks used in control and optimization applications do not fit this pattern. "Anytime" or incremental algorithms whose performance is variable and improves as their execution time increases are examples of such tasks. We have developed an adaptive scheduling framework to deal with multiple anytime tasks that compete with each other for processing time. This work explores the issues surrounding anytime tasks, how they are scheduled, how they adapt, and how they interact with more traditional scheduling techniques.
随时调度实时嵌入式控制应用
当前的实时调度方法侧重于具有固定(或至少有限)执行时间的周期性任务。然而,控制和优化应用程序中使用的许多任务不适合这种模式。“随时”或增量算法的性能是可变的,并随着执行时间的增加而提高,这就是此类任务的示例。我们已经开发了一个自适应调度框架来处理多个随时任务,这些任务相互竞争处理时间。这项工作探讨了围绕随时任务的问题,它们是如何安排的,它们如何适应,以及它们如何与更传统的安排技术相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信