Improving Gallager's upper bound on Huffman codes redundancy

Jia-Pei Shen, J. Gill
{"title":"Improving Gallager's upper bound on Huffman codes redundancy","authors":"Jia-Pei Shen, J. Gill","doi":"10.1109/ISIT.2001.936081","DOIUrl":null,"url":null,"abstract":"We propose the first single bound that supersedes Gallager's (1978) upper bound on the redundancy of binary Huffman codes with the given largest source symbol probability ranging from 0 to 0.5. We define the linear logarithm and linear logarithm entropy. We find the maximal difference between the linear and the ordinary logarithms. We prove that the \"redundancy\" of a binary Huffmann code with respect to the linear logarithm entropy is no more than the largest source symbol probability. We therefore establish a better upper bound than Gallager's on the redundancy of binary Huffman codes.","PeriodicalId":433761,"journal":{"name":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2001.936081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose the first single bound that supersedes Gallager's (1978) upper bound on the redundancy of binary Huffman codes with the given largest source symbol probability ranging from 0 to 0.5. We define the linear logarithm and linear logarithm entropy. We find the maximal difference between the linear and the ordinary logarithms. We prove that the "redundancy" of a binary Huffmann code with respect to the linear logarithm entropy is no more than the largest source symbol probability. We therefore establish a better upper bound than Gallager's on the redundancy of binary Huffman codes.
改进Huffman码冗余的Gallager上界
我们提出了取代Gallager(1978)的二进制霍夫曼码冗余上界的第一个单界,给定最大源符号概率范围为0到0.5。我们定义了线性对数和线性对数熵。我们找到了线性对数和普通对数的最大区别。我们证明了二进制霍夫曼码相对于线性对数熵的“冗余”不超过最大源符号概率。因此,我们在二元霍夫曼码的冗余上建立了一个比Gallager的更好的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信