On the geometry of generalized nonholonomic Kenmotsu manifolds

A. Bukusheva
{"title":"On the geometry of generalized nonholonomic Kenmotsu manifolds","authors":"A. Bukusheva","doi":"10.5922/0321-4796-2020-53-4","DOIUrl":null,"url":null,"abstract":"The concept of a generalized nonholonomic Kenmotsu manifold is introduced. In contrast to the previously defined nonholonomic Kenmotsu manifold, the manifold studied in the article is an almost normal almost contact metric manifold of odd rank. The manifold is equipped with a metric connection with torsion, which is called the canonical connection in this work. The main properties of the canonical connection are studied. The canonical connection is an analogue of the generalized Tanaka-Webster connection. In this paper, we prove that the canonical connection is the only metric connection with torsion of a special structure that pre­serves the structural 1-form and the Reeb vector field. We study the in­trinsic geometry of a generalized nonholonomic Kenmotsu manifold equipped with a canonical connection. It is proved that if a generalized nonholonomic Kenmotsu manifold is an Einstein manifold with respect to a canonical connection, then it is Ricci-flat with respect to this connec­tion. An example of a generalized nonholonomic Kenmotsu manifold that is not a nonholonomic Kenmotsu manifold is given.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2020-53-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of a generalized nonholonomic Kenmotsu manifold is introduced. In contrast to the previously defined nonholonomic Kenmotsu manifold, the manifold studied in the article is an almost normal almost contact metric manifold of odd rank. The manifold is equipped with a metric connection with torsion, which is called the canonical connection in this work. The main properties of the canonical connection are studied. The canonical connection is an analogue of the generalized Tanaka-Webster connection. In this paper, we prove that the canonical connection is the only metric connection with torsion of a special structure that pre­serves the structural 1-form and the Reeb vector field. We study the in­trinsic geometry of a generalized nonholonomic Kenmotsu manifold equipped with a canonical connection. It is proved that if a generalized nonholonomic Kenmotsu manifold is an Einstein manifold with respect to a canonical connection, then it is Ricci-flat with respect to this connec­tion. An example of a generalized nonholonomic Kenmotsu manifold that is not a nonholonomic Kenmotsu manifold is given.
广义非完整Kenmotsu流形的几何性质
引入广义非完整Kenmotsu流形的概念。与以往定义的非完整Kenmotsu流形不同,本文研究的流形是奇秩的几乎正规几乎接触度量流形。流形具有一个带扭转的度量连接,在本文中称为正则连接。研究了正则连接的主要性质。规范连接是广义田中-韦伯斯特连接的类似物。在本文中,我们证明了正则连接是保留结构1-形和Reeb向量场的特殊结构的唯一带扭转的度量连接。研究了具有正则连接的广义非完整Kenmotsu流形的本征几何。证明了一个广义非完整Kenmotsu流形对于正则连接是爱因斯坦流形,则它对于正则连接是ricci平坦的。给出了广义非完整Kenmotsu流形的一个例子,它不是一个非完整的Kenmotsu流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信