Evaluating hypotheses in geolocation on a very large sample of Twitter

NUT@EMNLP Pub Date : 2017-09-01 DOI:10.18653/v1/W17-4409
Bahar Salehi, Anders Søgaard
{"title":"Evaluating hypotheses in geolocation on a very large sample of Twitter","authors":"Bahar Salehi, Anders Søgaard","doi":"10.18653/v1/W17-4409","DOIUrl":null,"url":null,"abstract":"Recent work in geolocation has made several hypotheses about what linguistic markers are relevant to detect where people write from. In this paper, we examine six hypotheses against a corpus consisting of all geo-tagged tweets from the US, or whose geo-tags could be inferred, in a 19% sample of Twitter history. Our experiments lend support to all six hypotheses, including that spelling variants and hashtags are strong predictors of location. We also study what kinds of common nouns are predictive of location after controlling for named entities such as dolphins or sharks","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"2128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-4409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent work in geolocation has made several hypotheses about what linguistic markers are relevant to detect where people write from. In this paper, we examine six hypotheses against a corpus consisting of all geo-tagged tweets from the US, or whose geo-tags could be inferred, in a 19% sample of Twitter history. Our experiments lend support to all six hypotheses, including that spelling variants and hashtags are strong predictors of location. We also study what kinds of common nouns are predictive of location after controlling for named entities such as dolphins or sharks
在一个非常大的Twitter样本上评估地理定位的假设
最近在地理定位方面的研究提出了几个假设,即哪些语言标记与检测人们从哪里写作有关。在本文中,我们针对一个语料库检验了六个假设,该语料库由来自美国的所有地理标记推文组成,或者其地理标记可以推断,在Twitter历史的19%样本中。我们的实验支持了所有六个假设,包括拼写变体和标签是位置的有力预测因素。我们还研究了在控制了海豚或鲨鱼等命名实体后,哪些常见名词可以预测位置
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信