Jaemoon Lim, Minhyeok Heo, Chulwoo Lee, Chang-Su Kim
{"title":"Enhancement of noisy low-light images via structure-texture-noise decomposition","authors":"Jaemoon Lim, Minhyeok Heo, Chulwoo Lee, Chang-Su Kim","doi":"10.1109/APSIPA.2016.7820710","DOIUrl":null,"url":null,"abstract":"We propose a novel noisy low-light image enhancement algorithm via structure-texture-noise (STN) decomposition. We split an input image into structure, texture, and noise components, and enhance the structure and texture components separately. Specifically, we first enhance the contrast of the structure image, by extending a 2D histogram-based image enhancement scheme based on the characteristics of low-light images. Then, we reconstruct the texture image by retrieving texture components from the noise image, and enhance it by exploiting the perceptual response of the human visual system. Experimental results demonstrate that the proposed STN algorithm sharpens the texture and enhances the contrast more effectively than conventional algorithms, while removing noise without artifacts.","PeriodicalId":409448,"journal":{"name":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2016.7820710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We propose a novel noisy low-light image enhancement algorithm via structure-texture-noise (STN) decomposition. We split an input image into structure, texture, and noise components, and enhance the structure and texture components separately. Specifically, we first enhance the contrast of the structure image, by extending a 2D histogram-based image enhancement scheme based on the characteristics of low-light images. Then, we reconstruct the texture image by retrieving texture components from the noise image, and enhance it by exploiting the perceptual response of the human visual system. Experimental results demonstrate that the proposed STN algorithm sharpens the texture and enhances the contrast more effectively than conventional algorithms, while removing noise without artifacts.